Superprism effect in all-glass volumetric photonic crystals


This paper focuses on the superprism effect which can be obtained in low-contrast photonic crystals. The modelling is related to the newly developed method for all-dielectric photonic crystals. This places material constraints on the simulated crystals which limit the refractive index difference to 0.1 for all-glass photonic crystals and 0.6 for air-glass structures and forces us to focus on hexagonal lattices. The simulations show the existence of superprism effect in both types of structure for realistic glasses. In both cases various linear filling factors are studied in order to maximize the frequency range of the superprism effect. For the air-F2 glass structure it reaches 0.108 normalized frequencies and for the air-NC21 glass structure it reaches 0.99 normalized frequencies for TM polarization. For the double glass structures, the largest range is for the F2/NC21 photonic crystal and spans 0.012 normalized frequencies. In the F2/NC21 crystal the frequency range reaches 0.005 for TE polarization.

This is a preview of subscription content, log in to check access.


  1. 1.

    J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals — Molding the Flow of Light, Princeton University Press, Princeton, 1995.

    Google Scholar 

  2. 2.

    J.-M. Lourtioz, H. Benisty, V. Berger, and J.-M. Gerard, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Boston, 2008.

    Google Scholar 

  3. 3.

    E. Yablonovitch, “Inhibited spontaneous emission in solid—state physics and electronics”, Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  Google Scholar 

  4. 4.

    S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486–2489 (1987).

    ADS  Article  Google Scholar 

  5. 5.

    M. Imada, L.H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal wave-guides at optical-communication wavelengths”, Appl. Phys. Lett. 88, 171107 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett. 65, 3152–3155 (1990).

    ADS  Article  Google Scholar 

  7. 7.

    P.St.J. Russell, “Interference of integrated Floquet-Bloch waves”, Phys. Rev. A33, 3232–3242 (1986).

    ADS  Google Scholar 

  8. 8.

    R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides”, J. Mod. Opt. 34, 1589–1617 (1987).

    ADS  Article  Google Scholar 

  9. 9.

    J. Dellinger, D. Bernier, B. Cluzel, X. Le Roux, A. Lupu, F. de Fornel, and E. Cassan, “Near-field observation of beam steering in a photonic crystal superprism”. Opt. Lett. 36, 1074–1076 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    R. Kotynski, T. Stefaniuk, and A. Pastuszczak, “Sub-wave-length diffraction-free imaging with low-loss metal-dielectric multilayers”, Appl. Phys. A-Mater. 103, 905–909 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    A. Khorshidahmad and A. G. Kirk, “Composite superprism photonic crystal demultiplexer: analysis and design”, Opt. Express 18, 20518–20528 (2010).

    Article  Google Scholar 

  12. 12.

    N.C. Panoiu, M. Bahl, and R.M. Osgood, Jr., “Optically tunable superprism effect in nonlinear photonic crystals”, Opt. Lett. 28, 2503–2505 (2003).

    ADS  Article  Google Scholar 

  13. 13.

    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits”, J. Lightwave Technol. 17, 2032–2038 (1999).

    ADS  Article  Google Scholar 

  14. 14.

    A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic, Dordrecht, 2003.

    Google Scholar 

  15. 15.

    I. Kujawa, A. Filipkowski, D. Pysz, F. Hudelist, A. Waddie, R. Stepien, R. Buczynski, and M. R. Taghizadeh, “Photonic glass: novel method for fabrication of volume 2D photonic crystals”, Proc. of SPIE 7120, 71200M (2008).

    ADS  Article  Google Scholar 

  16. 16.

    F. Hudelist, R. Buczynski, A.J. Waddie, and M.R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses”, Opt. Express 17, 3255–3263 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    F. Hudelist, J.M. Nowosielski, R. Buczynski, A.J. Waddie, and M.R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses”, Opt. Lett. 35, 130–132, (2010).

    Article  Google Scholar 

  18. 18.

    M. Yamane and Y. Asahara, Glasses for Photonics, University Press, Cambridge, 2000.

    Google Scholar 

  19. 19.

    A. Sagan, S. Nowicki, R. Buczynski, M. Kowalczyk, and T. Szoplik, “Imaging phase objects with square-root, Foucault, and Hoffman real filters: a comparison”, Appl. Opt. 42, 5816–58 (2003).

    ADS  Article  Google Scholar 

  20. 20.

    R. Buczynski, D. Pysz, R. Stepien, A.J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M.R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass”, Laser Phys. Lett. 8, 443–448 (2011).

    Article  Google Scholar 

  21. 21.

    P. Yeh, “Electromagnetic propagtion in birefringent layered media”, JOSA 69, 742–756 (1979).

    ADS  Article  Google Scholar 

  22. 22.

    N. Malkova, D.A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals”, Phys. Rev. B72, 045144 (2005).

    ADS  Google Scholar 

  23. 23.

    S.G. Johnson, MIT Photonic-bandgaps,

Download references

Author information



Corresponding author

Correspondence to R. Buczyński.

About this article

Cite this article

Filipkowski, A., Buczyński, R., Waddie, A.J. et al. Superprism effect in all-glass volumetric photonic crystals. Opto-Electron. Rev. 20, 267–274 (2012).

Download citation


  • photonic crystal
  • superprism effect
  • photonic band gap