Opto-Electronics Review

, Volume 20, Issue 3, pp 267–274 | Cite as

Superprism effect in all-glass volumetric photonic crystals

  • A. Filipkowski
  • R. BuczyńskiEmail author
  • A. J. Waddie
  • I. Kujawa
  • D. Pysz
  • M. R. Taghizadeh
  • R. Stępień


This paper focuses on the superprism effect which can be obtained in low-contrast photonic crystals. The modelling is related to the newly developed method for all-dielectric photonic crystals. This places material constraints on the simulated crystals which limit the refractive index difference to 0.1 for all-glass photonic crystals and 0.6 for air-glass structures and forces us to focus on hexagonal lattices. The simulations show the existence of superprism effect in both types of structure for realistic glasses. In both cases various linear filling factors are studied in order to maximize the frequency range of the superprism effect. For the air-F2 glass structure it reaches 0.108 normalized frequencies and for the air-NC21 glass structure it reaches 0.99 normalized frequencies for TM polarization. For the double glass structures, the largest range is for the F2/NC21 photonic crystal and spans 0.012 normalized frequencies. In the F2/NC21 crystal the frequency range reaches 0.005 for TE polarization.


photonic crystal superprism effect photonic band gap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals — Molding the Flow of Light, Princeton University Press, Princeton, 1995.zbMATHGoogle Scholar
  2. 2.
    J.-M. Lourtioz, H. Benisty, V. Berger, and J.-M. Gerard, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Boston, 2008.zbMATHGoogle Scholar
  3. 3.
    E. Yablonovitch, “Inhibited spontaneous emission in solid—state physics and electronics”, Phys. Rev. Lett. 58, 2059–2062 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486–2489 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    M. Imada, L.H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal wave-guides at optical-communication wavelengths”, Appl. Phys. Lett. 88, 171107 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett. 65, 3152–3155 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    P.St.J. Russell, “Interference of integrated Floquet-Bloch waves”, Phys. Rev. A33, 3232–3242 (1986).ADSGoogle Scholar
  8. 8.
    R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides”, J. Mod. Opt. 34, 1589–1617 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    J. Dellinger, D. Bernier, B. Cluzel, X. Le Roux, A. Lupu, F. de Fornel, and E. Cassan, “Near-field observation of beam steering in a photonic crystal superprism”. Opt. Lett. 36, 1074–1076 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    R. Kotynski, T. Stefaniuk, and A. Pastuszczak, “Sub-wave-length diffraction-free imaging with low-loss metal-dielectric multilayers”, Appl. Phys. A-Mater. 103, 905–909 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    A. Khorshidahmad and A. G. Kirk, “Composite superprism photonic crystal demultiplexer: analysis and design”, Opt. Express 18, 20518–20528 (2010).CrossRefGoogle Scholar
  12. 12.
    N.C. Panoiu, M. Bahl, and R.M. Osgood, Jr., “Optically tunable superprism effect in nonlinear photonic crystals”, Opt. Lett. 28, 2503–2505 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits”, J. Lightwave Technol. 17, 2032–2038 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic, Dordrecht, 2003.CrossRefGoogle Scholar
  15. 15.
    I. Kujawa, A. Filipkowski, D. Pysz, F. Hudelist, A. Waddie, R. Stepien, R. Buczynski, and M. R. Taghizadeh, “Photonic glass: novel method for fabrication of volume 2D photonic crystals”, Proc. of SPIE 7120, 71200M (2008).ADSCrossRefGoogle Scholar
  16. 16.
    F. Hudelist, R. Buczynski, A.J. Waddie, and M.R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses”, Opt. Express 17, 3255–3263 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    F. Hudelist, J.M. Nowosielski, R. Buczynski, A.J. Waddie, and M.R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses”, Opt. Lett. 35, 130–132, (2010).CrossRefGoogle Scholar
  18. 18.
    M. Yamane and Y. Asahara, Glasses for Photonics, University Press, Cambridge, 2000.CrossRefGoogle Scholar
  19. 19.
    A. Sagan, S. Nowicki, R. Buczynski, M. Kowalczyk, and T. Szoplik, “Imaging phase objects with square-root, Foucault, and Hoffman real filters: a comparison”, Appl. Opt. 42, 5816–58 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    R. Buczynski, D. Pysz, R. Stepien, A.J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M.R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass”, Laser Phys. Lett. 8, 443–448 (2011).CrossRefGoogle Scholar
  21. 21.
    P. Yeh, “Electromagnetic propagtion in birefringent layered media”, JOSA 69, 742–756 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    N. Malkova, D.A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals”, Phys. Rev. B72, 045144 (2005).ADSGoogle Scholar
  23. 23.
    S.G. Johnson, MIT Photonic-bandgaps,

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • A. Filipkowski
    • 1
    • 2
  • R. Buczyński
    • 1
    • 3
    Email author
  • A. J. Waddie
    • 2
  • I. Kujawa
    • 1
  • D. Pysz
    • 1
  • M. R. Taghizadeh
    • 2
  • R. Stępień
    • 1
  1. 1.Institute of Electronic Materials TechnologyWarsawPoland
  2. 2.School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghScotland, UK
  3. 3.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations