Advertisement

Opto-Electronics Review

, Volume 20, Issue 3, pp 207–215 | Cite as

Dispersion management in soft glass all-solid photonic crystal fibres

  • R. Buczynski
  • J. Pniewski
  • D. Pysz
  • R. Stepien
  • R. Kasztelanic
  • I. Kujawa
  • A. Filipkowski
  • A. J. Waddie
  • M. R. Taghizadeh
Article

Abstract

The development of all-solid photonic crystal fibres for nonlinear optics is an alternative approach to air-glass solid core photonic crystal fibres. The use of soft glasses ensures a high refractive index contrast (> 0.1) and a high nonlinear coefficient of the fibres. We report on the dispersion management capabilities in all-solid photonic crystal fibres taking into account four thermally matched glasses which can be jointly processed using the stack-and-draw fibre technique. We present structures with over 450 nm broadband flat normal dispersion and ultra-flat near zero anomalous dispersion below 5 ps/nm/km over 300 nm dedicated to supercontinuum generation with 1540 nm laser sources. The development of an all-solid photonic crystal fibre made of F2 and NC21 glasses is presented. The fibre is used to demonstrate supercontinuum generation in the range of 730–870 nm (150 nm) with flatness below 5 dB.

Keywords

fibres’ dispersion photonic crystal fibres microstructured fibres soft glass supercontinuum generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, S. Taccheo, and C. D’Andrea, “Preparation and application of functionalized photonic crystal fibres”, Phys. Status Solidi A204, 3805–3821 (2007).ADSGoogle Scholar
  2. 2.
    R. Buczynski, D. Pysz, R. Stepien, A.J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M.R. Taghizadeh, “Super-continuum generation in photonic crystal fibres with nanoporous core made of soft glass”, Laser Phys. Lett. 8, 443–448 (2011).CrossRefGoogle Scholar
  3. 3.
    A.A. Ivanov, M.V. Alfimov, and A.M. Zheltikov, “Photonic-crystal-fibre solutions for ultrafast chromium forsterite laser technologies”, Laser Phys. Lett. 4, 775–780 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    H. Ebendorff-Heidepriem and T.M. Monro, “Soft glass micro-structured optical fibres: Recent progress in fabrication and opportunities for novel optical devices”, in 11th Int. Conf. on Transparent Optical Networks, pp. 1–4, Azores, 2009.Google Scholar
  5. 5.
    D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibres”, Appl. Phys. B-Lasers O. 93, 531–538 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    V.L. Kalashnikov, E. Sorokin, and I.T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs”, Appl. Phys. B-Laser O. 87, 37–44 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    R. Buczynski, H.T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J.E. McCarthy, A.J. Waddie, A.K. Kar, and M.R. Taghizadeh, “Supercontinuum generation up to 2.5 um in photonic crystal fibre made of lead-bismuth-gallate glass”, Laser Phys. Lett. 7, 666–672 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    R. Buczynski, D. Pysz, T. Martynkien, D. Lorenc, I. Kujawa, T. Nasilowski, F. Berghmans, H. Thienpont, and R. Stepien, “Ultra flat supercontinuum generation in silicate dual core microstructured fibre”, Laser Phys. Lett. 6, 575–581 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    V.L. Kalashnikov, E. Sorokin, S. Naumov, I.T. Sorokina, V.V. Ravi Kanth Kumar, and A.K. George, “Low-threshold supercontinuum generation from an extruded SF6 PCF using a compact Cr4+:YAG laser”, Appl. Phys. B-Laser O. 79, 591–596 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fibre”, Opt. Express 11, 2225–2230 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    F. Luan, A.K. George, T.D. Hedley, G.J. Pearce, D.M. Bird, J.C. Knight, and P.St.J. Russell, “All-solid photonic bandgap fibre”, Opt. Lett. 29, 2369–2371 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    A. Argyros, T. Birks, S. Leon-Saval, C.M. Cordeiro, F. Luan, and P.St.J. Russell, “Photonic bandgap with an index step of one percent”, Opt. Express 13, 309–314 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all solid 2D photonic bandgap fibre with a low-loss region (< 20 dB/km) around 1550 nm”, Opt. Express 13, 8452–8459 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fibre”, Opt. Lett. 32, 1023–1025, (2007).ADSCrossRefGoogle Scholar
  15. 15.
    J. Fini, “Design of solid and microstructure fibres for suppression of higher-order modes,” Opt. Express 13, 3477–3490 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    M.-Y. Chen, “All-solid silica-based photonic crystal fibres”, Opt. Commun. 266, 151–158 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    F. Poletti, X. Feng, G.M. Ponzo, M.N. Petrovich, W.H. Loh, and D.J. Richardson, “All-solid highly nonlinear singlemode fibres with a tailored dispersion profile”, Opt. Express 19, 66–80 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    Camerlingo, X. Feng, F. Poletti, G. Ponzo, F. Parmigiani, P. Horak, M. Petrovich, P. Petropoulos, W. Loh, and D. Richardson, “Near-zero dispersion, highly nonlinear leadsilicate W-type fibre for applications at 1.55 μm”, Opt. Express 18, 15747–15756 (2010).CrossRefGoogle Scholar
  19. 19.
    X. Feng, T.M. Monro, P. Petropoulos, V. Finazzi, and D.J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fibre with high index-contrast for highly nonlinear optical devices”, Appl. Phys. Lett. 87, 1–3 (2005).Google Scholar
  20. 20.
    X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W.H. Loh, and D.J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fibre for nonlinear applications at 1.55μm”, Opt. Express 17, 20249–20255 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    S. Ghosh, R.K. Varshney, B.P. Pal, and G. Monnom. “A Bragg-like chirped clad all-solid microstructured optical fibre with ultra-wide bandwidth for short pulse delivery and pulse reshaping”, Opt. Quant. Electronics 42, 1–14 (2010).CrossRefGoogle Scholar
  22. 22.
    A. Wang, A. George, J. Liu, and J. Knight, “Highly biref-ringent lamellar core fibre”, Opt. Express 13, 5988–5993 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W. Urbanczyk, and S. Wabnitz, “Nonlinear femto-second pulse propagation in an all-solid photonic bandgap fibre”, Opt. Express 17, 10393–10398 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    A.M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibres”, J. Opt. Soc. Am. B27, 550–559 (2010).ADSGoogle Scholar
  25. 25.
    J.M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibre”, Rev. Mod. Phys. 78, 1135–1184 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    R.W. Pryor, Multiphysics Modelling Using COMSOL A First Principles Approach, Jones and Bartlett Publishers, Sadbury, 2011.Google Scholar
  27. 27.
    M. Bache, H. Nielsen, J. Laegsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibres for zero group-velocity mismatch”, Opt. Lett. 31, 1612–1614 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    Supercontinuum Generation in Optical Fibre, edited by J.M. Dudley and J.R. Taylor, Cambridge University Press, 2010.Google Scholar
  29. 29.
  30. 30.
    D. Lorenc, I. Bugar, M. Aranyosiova, R. Buczynski, D. Pysz, D. Velic, and D. Chorvat, “Linear and nonlinear properties of multicomponent glass photonic crystal fibres,” Laser Phys. 18(3), 270–276 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • R. Buczynski
    • 1
    • 2
    • 3
  • J. Pniewski
    • 2
  • D. Pysz
    • 1
  • R. Stepien
    • 1
  • R. Kasztelanic
    • 2
  • I. Kujawa
    • 1
  • A. Filipkowski
    • 1
    • 3
  • A. J. Waddie
    • 3
  • M. R. Taghizadeh
    • 3
  1. 1.Institute of Electronic Materials Technology (ITME)WarsawPoland
  2. 2.Faculty of PhysicsUniversity of WarsawWarsawPoland
  3. 3.School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghScotland, UK

Personalised recommendations