American Thoracic Society, ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, Am. J. Respir. Crit. CareMed.
171, 912–930 (2005).
Article
Google Scholar
A. Michalski, Metrology in Medicine — Selected Problems, Military University of Technology Publishing Office, Warsaw, 2011.
Google Scholar
L. Pauling, A.B. Robinson, R. Teranishi, and P. Cary, “Quantitative analysis of urine vapour and breath by gas-liquid partition chromatography”, P. Natl. Acad. Sci. USA
68, 2374–2384 (1971).
Article
ADS
Google Scholar
H. O’Neill, S.M. Gordon, M. O’Neill, R.D. Gibbons, and J.P. Szidon, “A computerized classification technique for screening for the presence of breath biomarkers in lung cancer”, Clin. Chem.
34, 1613–1618 (1988).
Google Scholar
C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits”, Sensors
9, 8230–8262 (2009).
Article
Google Scholar
T. Kondo, T. Mitsui, M. Kitagawa, and Y. Nakae, “Association of fasting breath nitrous oxide concentration with gastric juice nitrate and nitrite concentrations and helicobacter pylori infection”, Digest. Dis. Sci.
45, 2054–2057 (2000).
Article
Google Scholar
R.A. Dweik, D. Laskowski, H.M. Abu-Soud, F.T. Kaneko, R. Hutte, D.J. Stuehr, and S.C. Erzurum, “Nitric oxide synthesis in the lung, regulation by oxygen through a kinetic mechanism”, J. Clin. Invest.
101, 660–666 (1998).
Article
Google Scholar
B. Enderby, D. Smith, W. Carroll, and W. Lenney, “Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis”, Pediatr. Pulm.
44, 142–147 (2009).
Article
Google Scholar
Z. Witkiewicz, Principles of Chromatography, Scientific-Technical Publishers (WNT), Warsaw, 2000. (in Polish)
Google Scholar
W. Mueller, J. Schubert, A. Benzing, and K. Geiger, “Method for analysis of exhaled air by microwave energy desorption coupled with gas chromatography-flame ionization detection-mass spectrometry”, J. Chromatogr.
B716, 27–38 (1998).
Google Scholar
X. Chen, F. Xu, Y. Wang, Y. Pan, D. Lu, and P. Wang, “A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis”, Cancer
110, 835–844 (2007).
Article
Google Scholar
A. Ulanowska, T. Ligor, M. Michel, and B. Buszewski, “Hyphenated and unconventional methods for searching volatile cancer biomarkers”, Ecol. Chem. En.
17, 9–23 (2010).
Google Scholar
http://www.chromacademy.com/resolver/nov2010/fig-jpg
http://sift-ms.net/user/cimage/SiftMsColourpng
T. Pustelny, Physical and Technical Aspects of Optoelectronic Sensors, Silesian University of Technology Publishing Office, 2005.
http://www.tms.org/pubs/journals/JOM/0010/Ivanov/Ivanov-0010.html
http://www.nature.com/nmat/journal/v2/n1/full/nmat768.html
A. Bratkowski, A. Korcala, Z. Łukasik, P. Borowski, and W. Bala, “Novel gas sensor based on porous silicon measured by photovoltage, photoluminescence, and admittance spectroscopy”, Opto-Electron. Rev.
13, 35–38 (2005).
Google Scholar
R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbieć, “Selected application of near-infrared optical methods in medical diagnosis”, Opto-Electron. Rev.
12, 255–262 (2004).
Google Scholar
J. Puton, K. Jasek, B. Siodłowski, A. Knap, and K. Wiśniewski, “Optimization of a pulsed IR source for NDIR gas analysis”, Opto-Electron. Rev.
10, 97–103 (2002).
Google Scholar
M. Walczak, “Operant conditioning of dogs for detection of odour markers of cancer diseases”, PhD Dissertation, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Warsaw, Poland, 2009. (in Polish)
Google Scholar
P. Kowalczyk, Physics of Molecules, Polish Scientific Publishers (PWN), Warsaw, 2000. (in Polish)
Google Scholar
M.F. Merienne, A. Jenouvrier, and B. Coquart, “The NO2 absorption spectrum. I: absorption cross-sections at ambient temperature in the 300–500 nm region”, J. Atmos. Chem.
20, 281–297 (1995).
Article
Google Scholar
M.I. Mazurenka, B.I. Fawcett, J.M.F. Elks, D.E. Shallcross, and A.J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2”, Chem. Phys. Lett.
367, 1–9 (2003).
Article
ADS
Google Scholar
J. Wojtas, A. Czyżewski, T. Stacewicz, and Z. Bielecki, “Detection of NO2 using cavity enhanced methods”, Opt. Appl.
36, 461–467 (2006).
Google Scholar
K. Holc, Z. Bielecki, J. Wojtas, P. Perlin, J. Goss, A. Czyżewski, P. Magryta, and T. Stacewicz, “Blue tunable laser diodes for trace matter detection”, Opt. Appl. 40, 641–651 (2010).
Google Scholar
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity Ring Down Spectroscopy: detection of trace amounts of matter”, Opto-Electron. Rev.
20, (2012). (in press)
http://www.cfa.harvard.edu/HITRAN/
J. Wojtas, J. Mikołajczyk, M. Nowakowski, B. Rutecka, R. Mędrzycki, and Z. Bielecki, “Appling CEAS method to UV, VIS, and IR spectroscopy sensors”, B. Pol. Acad. Sci-Te.
59, No. 4 (brak stron) (2011).
http://badc.nerc.ac.uk/data/esa-wv
http://www.nist.gov/pml/data/xcom/index.cfm
http://www.teledyne-ai.com/pdf/lga-3500.pdf
J.M. Chalmers, Mid-infrared Spectroscopy. Spectroscopy in Process Analysis, CRC Press LLC, 117, 1999.
http://www.ipm.fraunhofer.de
A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum.
59, 2544–2551 (1988).
Article
ADS
Google Scholar
K.W. Busch and M.A. Busch, Cavity-Ringdown Spectroscopy, an Ultratrace–Absorption Measurement Technique, ACS Symposium Series, American Chemical Society, Washington DC, 1999.
G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell, 2009.
Z. Bielecki and T. Stacewicz, Optoelectronic Sensor of Nitrogen Dioxide, Analysis and Construction Requirements, Military University of Technology Publishing Office, Warsaw, 2011. (in Polish)
Google Scholar
D. Romanini, A.A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy”, Chem. Phys. Lett.
264, 316–322 (1997).
Article
ADS
Google Scholar
G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications”, Int. Rev. Phys. Chem.
19, 565–607 (2000).
Article
Google Scholar
J. Ye, L.S. Ma, and J.L. Hall, “Ultrastable optical frequency reference at 064 μm using a C2HD molecular overtone transition”, IEEE T. Instrument. Meas.
46, 178–182 (1997).
Article
Google Scholar
R. Engeln, G. Berden, R. Peeters, and G. Meier, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy”, Rev. Sci. Instrum.
69, 3763–3769 (1998).
Article
ADS
Google Scholar
J.D. Ayers, R.L. Apodaca, W.R. Simpson, and D.S. Baer, “Off-axis cavity ring-down spectroscopy: application to atmospheric nitrate radical detection”, Appl. Opt.
44, 7239–7242 (2005).
Article
ADS
Google Scholar
L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys.
B72, 859–863 (2001).
ADS
Google Scholar
J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Uenten, D.S. Urevig, D.J. Spencer, and D.J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method”, Appl. Opt.
19, 144–147 (1980).
Article
ADS
Google Scholar
F.K. Tittel, Yu. Bakhirkin, A.A. Kosterev, G. Wysocki, and S. So & R.F. Curl, “Recent advances of quantum and inter-band cascade laser based gas sensor technology”, www.lancs.ac.uk/depts/spc/conf/miomd-7/Tittel.ppt
V. Spagnolo, R. Lewicki, L. Dong, and F. K. Tittel, “Quantum-cascade-laser-based optoacoustic detection for breath sensor applications”, IEEE
978, 332–335 (2011).
Google Scholar
A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption”, Chem. Phys. Lett. 293, 331–336 (1998).
Article
ADS
Google Scholar
A. O’Keefe, J.J. Scherer, and J.B. Paul, “CW integrated cavity output spectroscopy”, Chem. Phys. Lett. 307, 343–349 (1999).
Article
Google Scholar
H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Murtz, “Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O.
72, 121–125 (2001).
ADS
Article
Google Scholar
D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a diffe rence frequency generation spectrometer”, Appl. Phys. B-Lasers O.
85, 437–443 (2006).
Article
ADS
Google Scholar
D. Halmer, G. von Basum, P. Hering, and M. Murtz, “Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulphide”, Opt. Lett.
30, 2314–2316 (2005).
Article
ADS
Google Scholar
T. Starecki, Selected Aspects of Photoacoustic Instruments Optimization, BTC, Legionowo, 2009.
Google Scholar
A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, and F.K. Tittel, “Quartz-enhanced photoacoustic spectroscopy”, Opt. Lett.
27, 1902–1904 (2002).
Article
ADS
Google Scholar
R.F. Curl and F.K. Tittel, “Tunable infrared laser spectroscopy”, Annu. Rep. Prog. Chem. Sect.
C98, 217–270 (2002).
Article
Google Scholar
F.K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy”, Springer. Topics Appl. Phys.
89, 445–510 (2003).
Google Scholar
A. Kosterev, F.K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing”, Rev. Sci. Instrum.
76, 043105 (2005).
Article
ADS
Google Scholar
M. Bugajski, K. Kosiel, A. Szerling, J. Kubacka-Traczyk, I. Sankowska, P. Karbownik, A. Trajnerowicz, E. Pruszyńska Karbownik, K. Pierściński, and D. Pierścińska, “GaAs/AlGaAs (9.4 μm) quantum cascade lasers operating at 260 K”, B. Pol. Acad. Sci-Te.
58, 471–476 (2010).
Google Scholar
http://echozycia.ddsoft.pl/Files/file/%C5%81owcy%20oddech%C3%B3w.pdf
P.C. Kamat, C.B. Roller, K. Namjou, J.D. Jeffers, A. Faramarzalian, R. Salas, and P.J. McCann, “Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer”, Appl. Opt.
46, 3969–3975 (2007).
Article
ADS
Google Scholar
C. Wang and A. Mbi, “A new acetone detection device using cavity ringdown spectroscopy at 266 nm: evaluation of the instrument performance using acetone sample solutions”, Meas. Sci. Technol.
18, 2731–2741 (2007).
Article
Google Scholar
C. Wang, A. Mbi, and M. Shepherd, “A study on breath acetone in diabetic patients using a cavity ring-down breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C”, IEEE Sens.
10, 54–63 (2010).
Article
Google Scholar
C. Wang and A.B. Surampudi, “An acetone breath analyzer using cavity ring-down spectroscopy: an initial test with human subjects under various situations”, Meas. Sci. Technol.
19, 105604–105614 (2008).
Article
ADS
Google Scholar
L.R. Narasimhan, W. Goodman, and C.K.N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis”, P. Natl. Acad. Sci. USA
98, 4617–4621 (2001).
Article
ADS
Google Scholar
U. Lachish, S. Rotter, E. Adler, and U. El-Hanany, “Tunable diode laser based spectroscopic system for ammonia detection in human respiration”, Rev. Sci. Instrum.
58, 923–927 (1987).
Article
ADS
Google Scholar
J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath”, Appl. Opt.
45, 9230–9237 (2006).
Article
ADS
Google Scholar
J. Manne, W. Jager, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques”, Appl. Phys. B-Lasers O.
94, 337–344 (2009).
Article
ADS
Google Scholar
K.L. Moskalenko, A.I. Nadezhdinskii, and I.A. Adamovskaya, “Human breath trace gas content study by tunable diode laser spectroscopy technique”, Infrared Phys. Techn.
37, 181–192 (1996).
Article
ADS
Google Scholar
M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis”, Opt. Express
16, 2387–2397 (2008).
Article
ADS
Google Scholar
R. Lewicki, A.A. Kosterev, Y.A. Bakhirkin, D.M. Thomazy, J. Doty, L. Dong, and F.K. Tittel, “Real time ammonia detection in exhaled human breath with a quantum cascade laser based sensor”, IEEE
978, 1–2 (2009).
Google Scholar
M.M.J.W. Van Herpen, A.K.Y. Ngai, S.E. Bisson, J.H.P. Hackstein, E.J. Woltering, and F.J.M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects”, Appl. Phys. B-Lasers O.
82, 665–669 (2006).
Article
ADS
Google Scholar
E.R. Crosson, K.N. Ricci, B.A. Richman, F.C. Chilese, T.G. Owano, R.A. Provencal, M.W. Todd, J. Glasser, A.A. Kachanow, B.A. Paldus, T.G. Spence, and R.N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath”, Anal. Chem.
74, 2003–2007 (2002).
Article
Google Scholar
V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 57 μm”, Sens. Actuat.
B29, 101–107 (1995).
Google Scholar
G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R.F. Curl, and F.K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulphide”, Appl. Opt.
43, 6040–6046 (2004).
Article
ADS
Google Scholar
Ch. Roller, A.A. Kosterev, F.K. Tittel, K. Uehara, C. Gmachl, and D.L. Sivco, “Carbonyl sulfide detection with a thermoelectrically cooled midinfrared quantum cascade laser”, Opt. Lett.
28, 2052–2054 (2003).
Article
ADS
Google Scholar
M.R. McCurdy, Y. Bakhirkin, G. Wysocki, and F.K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy”, J. Biomed. Opt.
12, 034034:1–034034:9 (2007).
Article
Google Scholar
R. Bartlome and M.W. Sigrist, “Laser based human breath analysis: D/H isotope ratio increases following heavy water intake”, Opt. Lett.
34, 866–868 (2009).
Article
ADS
Google Scholar
K.R. Parameswaran, D.I. Rosen, M.G. Allen, A.M. Ganz, and T.H. Risby, “Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements”, Appl. Opt.
48, B73–B79 (2009).
Article
ADS
Google Scholar
K.D. Skeldon, L.C. McMillan, C.A. Wyse, S.D. Monk, G. Gibson, C. Patterson,; T. France, C. Longbottom, and M.J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer”, Respir. Med.
100, 300–306 (2006).
Article
Google Scholar
H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Murtz, “Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O.
72, 121–125 (2001).
ADS
Article
Google Scholar
G. von Basum, D. Halmer, P. Hering, M. Murtz, S. Schiller, F. Mueller, A. Popp, and F. Kuehnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer”, Opt. Lett.
29, 797–799 (2004).
Article
ADS
Google Scholar
C.S. Patterson, L.C. McMillan, K. Stevenson, K. Radhakrishnan, P.G. Shiels, M.J. Padgett, and K.D. Skeldon, “Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy”, J. Breath Res.
1, 026005:1–026005:8 (2007).
Article
Google Scholar
K.D. Skeldon, C. Patterson, C.A. Wyse, G.M. Gibson, M.J. Padgett, C. Longbottom, and L.C McMillan, “The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy”, J. Opt. A-Pure Appl. Op.
7, S376–S384 (2005).
Article
ADS
Google Scholar
A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath”, Int. J. Environ. A. Ch.
85, 1001–1012 (2005).
Article
Google Scholar
D.C. Dumitras, D.C. Dutu, C. Matei, A.M. Magureanu, M. Petrus, C. Popa, and V. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis”, Rom. Rep. Phys.
60, 593–602 (2008).
Google Scholar
J.H. Miller, Y.A. Bakhirkin, T. Ajtai, F.K. Tittel, C.J. Hill, and R.Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser”, Appl. Phys. — Laser O.
85, 391–396 (2006).
Article
ADS
Google Scholar
D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN”, Appl. Phys. B-Laser O.
72, 947–952 (2001).
ADS
Article
Google Scholar
H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Murtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O.
75, 311–316 (2002).
Article
ADS
Google Scholar
M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level”, Appl. Phys. B-Lasers O.
85, 285–288 (2006).
Article
ADS
Google Scholar
M. Horstjann, Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, C.M. Wong, C.J. Hill, and R.Q. Yang, “Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy”, Appl. Phys. B-Lasers O.
79, 799–803 (2004).
Article
ADS
Google Scholar
D. Richter, A. Fried, B.P. Wert, J.G. Walega, and F.K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection”, Appl. Phys. B-Lasers O.
75, 281–288 (2002).
Article
ADS
Google Scholar
L. Ciaffoni, R. Grilli, G. Hancock, A.J. Orr-Ewing, R. Peverall, and G.A.D. Ritchie, “3.5-μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module”, Appl. Phys. B-Lasers O.
94, 517–525 (2009).
Article
ADS
Google Scholar
D. Marinov, J.M. Rey, M.G. Muller, and M.W. Sigrist, “Spectroscopic investigation of methylated amines by a cavity-ringdown-based spectrometer”, Appl. Opt.
46, 3981–3986 (2007).
Article
ADS
Google Scholar
Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, and F.K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection”, Appl. Opt.
43, 2257–2266 (2004).
Article
ADS
Google Scholar
K. Namjou, C.B. Roller, T.E. Reich, J.D. Jeffers, G.L. McMillen, P.J. McCann, and M.A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy”, Appl. Phys. B-Lasers O., 85, 427–435 (2006).
Article
ADS
Google Scholar
L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B-Lasers O.
72, 859–863 (2001).
ADS
Article
Google Scholar
A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, and A.Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser”, Appl. Opt.
40, 5522–5529 (2001).
Article
ADS
Google Scholar
C. Roller, K. Namjou, J.D. Jeffers, M. Camp, A. Mock, P.J. McCann, and J. Grego, “Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation”, Appl. Opt.
41, 6018–6029 (2002).
Article
ADS
Google Scholar
K. Namjou, C.B. Roller, and G. McMillen, “Breath analysis using mid infrared tunable laser spectroscopy”, Proc. 6th Ann. IEEE Conf. on Sensors, Atlanta, GA, 1337–1340 (2007).
K. Heinrich, T. Fritsch, P. Hering, and M. Murtz, “Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath”, Appl. Phys. B-Lasers O.
95, 281–286 (2009).
Article
ADS
Google Scholar