Opto-Electronics Review

, Volume 20, Issue 1, pp 26–39 | Cite as

Ultrasensitive laser spectroscopy for breath analysis

  • J. WojtasEmail author
  • Z. Bielecki
  • T. Stacewicz
  • J. Mikołajczyk
  • M. Nowakowski
Invited Paper


At present there are many reasons for seeking new methods and technologies that aim to develop new and more perfect sensors for different chemical compounds. However, the main reasons are safety ensuring and health care. In the paper, recent advances in the human breath analysis by the use of different techniques are presented. We have selected non-invasive ones ensuring detection of pathogenic changes at a molecular level. The presence of certain molecules in the human breath is used as an indicator of a specific disease. Thus, the analysis of the human breath is very useful for health monitoring. We have shown some examples of diseases’ biomarkers and various methods capable of detecting them. Described methods have been divided into non-optical and optical methods. The former ones are the following: gas chromatography, flame ionization detection, mass spectrometry, ion mobility spectrometry, proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry. In recent twenty years, the optical methods have become more popular, especially the laser techniques. They have a great potential for detection and monitoring of the components in the gas phase. These methods are characterized by high sensitivity and good selectivity. The spectroscopic sensors provide the opportunity to detect specific gases and to measure their concentration either in a sampling place or a remote one. Multipass spectroscopy, cavity ring-down spectroscopy, and photo-acoustic spectroscopy were characterised in the paper as well.


trace matter detection breath analysis diseases biomarkers absorption spectroscopy laser spectroscopy multi-pass spectroscopy MPS cavity ring-down spectroscopy CRDS cavity enhanced absorption spectroscopy CEAS photoacoustic spectroscopy PAS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Thoracic Society, ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, Am. J. Respir. Crit. CareMed. 171, 912–930 (2005).CrossRefGoogle Scholar
  2. 2.
    A. Michalski, Metrology in Medicine — Selected Problems, Military University of Technology Publishing Office, Warsaw, 2011.Google Scholar
  3. 3.
    L. Pauling, A.B. Robinson, R. Teranishi, and P. Cary, “Quantitative analysis of urine vapour and breath by gas-liquid partition chromatography”, P. Natl. Acad. Sci. USA 68, 2374–2384 (1971).CrossRefADSGoogle Scholar
  4. 4.
    H. O’Neill, S.M. Gordon, M. O’Neill, R.D. Gibbons, and J.P. Szidon, “A computerized classification technique for screening for the presence of breath biomarkers in lung cancer”, Clin. Chem. 34, 1613–1618 (1988).Google Scholar
  5. 5.
    C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits”, Sensors 9, 8230–8262 (2009).CrossRefGoogle Scholar
  6. 6.
    T. Kondo, T. Mitsui, M. Kitagawa, and Y. Nakae, “Association of fasting breath nitrous oxide concentration with gastric juice nitrate and nitrite concentrations and helicobacter pylori infection”, Digest. Dis. Sci. 45, 2054–2057 (2000).CrossRefGoogle Scholar
  7. 7.
    R.A. Dweik, D. Laskowski, H.M. Abu-Soud, F.T. Kaneko, R. Hutte, D.J. Stuehr, and S.C. Erzurum, “Nitric oxide synthesis in the lung, regulation by oxygen through a kinetic mechanism”, J. Clin. Invest. 101, 660–666 (1998).CrossRefGoogle Scholar
  8. 8.
    B. Enderby, D. Smith, W. Carroll, and W. Lenney, “Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis”, Pediatr. Pulm. 44, 142–147 (2009).CrossRefGoogle Scholar
  9. 9.
    Z. Witkiewicz, Principles of Chromatography, Scientific-Technical Publishers (WNT), Warsaw, 2000. (in Polish)Google Scholar
  10. 10.
    W. Mueller, J. Schubert, A. Benzing, and K. Geiger, “Method for analysis of exhaled air by microwave energy desorption coupled with gas chromatography-flame ionization detection-mass spectrometry”, J. Chromatogr. B716, 27–38 (1998).Google Scholar
  11. 11.
    X. Chen, F. Xu, Y. Wang, Y. Pan, D. Lu, and P. Wang, “A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis”, Cancer 110, 835–844 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Ulanowska, T. Ligor, M. Michel, and B. Buszewski, “Hyphenated and unconventional methods for searching volatile cancer biomarkers”, Ecol. Chem. En. 17, 9–23 (2010).Google Scholar
  13. 13.
  14. 14.
  15. 15.
    T. Pustelny, Physical and Technical Aspects of Optoelectronic Sensors, Silesian University of Technology Publishing Office, 2005.Google Scholar
  16. 16.
  17. 17.
  18. 18.
    A. Bratkowski, A. Korcala, Z. Łukasik, P. Borowski, and W. Bala, “Novel gas sensor based on porous silicon measured by photovoltage, photoluminescence, and admittance spectroscopy”, Opto-Electron. Rev. 13, 35–38 (2005).Google Scholar
  19. 19.
    R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbieć, “Selected application of near-infrared optical methods in medical diagnosis”, Opto-Electron. Rev. 12, 255–262 (2004).Google Scholar
  20. 20.
    J. Puton, K. Jasek, B. Siodłowski, A. Knap, and K. Wiśniewski, “Optimization of a pulsed IR source for NDIR gas analysis”, Opto-Electron. Rev. 10, 97–103 (2002).Google Scholar
  21. 21.
    M. Walczak, “Operant conditioning of dogs for detection of odour markers of cancer diseases”, PhD Dissertation, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Warsaw, Poland, 2009. (in Polish)Google Scholar
  22. 22.
    P. Kowalczyk, Physics of Molecules, Polish Scientific Publishers (PWN), Warsaw, 2000. (in Polish)Google Scholar
  23. 23.
    M.F. Merienne, A. Jenouvrier, and B. Coquart, “The NO2 absorption spectrum. I: absorption cross-sections at ambient temperature in the 300–500 nm region”, J. Atmos. Chem. 20, 281–297 (1995).CrossRefGoogle Scholar
  24. 24.
    M.I. Mazurenka, B.I. Fawcett, J.M.F. Elks, D.E. Shallcross, and A.J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2”, Chem. Phys. Lett. 367, 1–9 (2003).CrossRefADSGoogle Scholar
  25. 25.
    J. Wojtas, A. Czyżewski, T. Stacewicz, and Z. Bielecki, “Detection of NO2 using cavity enhanced methods”, Opt. Appl. 36, 461–467 (2006).Google Scholar
  26. 26.
    K. Holc, Z. Bielecki, J. Wojtas, P. Perlin, J. Goss, A. Czyżewski, P. Magryta, and T. Stacewicz, “Blue tunable laser diodes for trace matter detection”, Opt. Appl. 40, 641–651 (2010).Google Scholar
  27. 27.
    T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity Ring Down Spectroscopy: detection of trace amounts of matter”, Opto-Electron. Rev. 20, (2012). (in press)Google Scholar
  28. 28.
  29. 29.
    J. Wojtas, J. Mikołajczyk, M. Nowakowski, B. Rutecka, R. Mędrzycki, and Z. Bielecki, “Appling CEAS method to UV, VIS, and IR spectroscopy sensors”, B. Pol. Acad. Sci-Te. 59, No. 4 (brak stron) (2011).Google Scholar
  30. 30.
  31. 31.
  32. 32.
  33. 33.
    J.M. Chalmers, Mid-infrared Spectroscopy. Spectroscopy in Process Analysis, CRC Press LLC, 117, 1999.Google Scholar
  34. 34.
  35. 35.
    A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2551 (1988).CrossRefADSGoogle Scholar
  36. 36.
    K.W. Busch and M.A. Busch, Cavity-Ringdown Spectroscopy, an Ultratrace–Absorption Measurement Technique, ACS Symposium Series, American Chemical Society, Washington DC, 1999.Google Scholar
  37. 37.
    G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell, 2009.Google Scholar
  38. 38.
    Z. Bielecki and T. Stacewicz, Optoelectronic Sensor of Nitrogen Dioxide, Analysis and Construction Requirements, Military University of Technology Publishing Office, Warsaw, 2011. (in Polish)Google Scholar
  39. 39.
    D. Romanini, A.A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy”, Chem. Phys. Lett. 264, 316–322 (1997).CrossRefADSGoogle Scholar
  40. 40.
    G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications”, Int. Rev. Phys. Chem. 19, 565–607 (2000).CrossRefGoogle Scholar
  41. 41.
    J. Ye, L.S. Ma, and J.L. Hall, “Ultrastable optical frequency reference at 064 μm using a C2HD molecular overtone transition”, IEEE T. Instrument. Meas. 46, 178–182 (1997).CrossRefGoogle Scholar
  42. 42.
    R. Engeln, G. Berden, R. Peeters, and G. Meier, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy”, Rev. Sci. Instrum. 69, 3763–3769 (1998).CrossRefADSGoogle Scholar
  43. 43.
    J.D. Ayers, R.L. Apodaca, W.R. Simpson, and D.S. Baer, “Off-axis cavity ring-down spectroscopy: application to atmospheric nitrate radical detection”, Appl. Opt. 44, 7239–7242 (2005).CrossRefADSGoogle Scholar
  44. 44.
    L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B72, 859–863 (2001).ADSGoogle Scholar
  45. 45.
    J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Uenten, D.S. Urevig, D.J. Spencer, and D.J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method”, Appl. Opt. 19, 144–147 (1980).CrossRefADSGoogle Scholar
  46. 46.
    F.K. Tittel, Yu. Bakhirkin, A.A. Kosterev, G. Wysocki, and S. So & R.F. Curl, “Recent advances of quantum and inter-band cascade laser based gas sensor technology”,
  47. 47.
    V. Spagnolo, R. Lewicki, L. Dong, and F. K. Tittel, “Quantum-cascade-laser-based optoacoustic detection for breath sensor applications”, IEEE 978, 332–335 (2011).Google Scholar
  48. 48.
    A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption”, Chem. Phys. Lett. 293, 331–336 (1998).CrossRefADSGoogle Scholar
  49. 49.
    A. O’Keefe, J.J. Scherer, and J.B. Paul, “CW integrated cavity output spectroscopy”, Chem. Phys. Lett. 307, 343–349 (1999).CrossRefGoogle Scholar
  50. 50.
    H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Murtz, “Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O. 72, 121–125 (2001).ADSCrossRefGoogle Scholar
  51. 51.
    D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a diffe rence frequency generation spectrometer”, Appl. Phys. B-Lasers O. 85, 437–443 (2006).CrossRefADSGoogle Scholar
  52. 52.
    D. Halmer, G. von Basum, P. Hering, and M. Murtz, “Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulphide”, Opt. Lett. 30, 2314–2316 (2005).CrossRefADSGoogle Scholar
  53. 53.
    T. Starecki, Selected Aspects of Photoacoustic Instruments Optimization, BTC, Legionowo, 2009.Google Scholar
  54. 54.
    A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, and F.K. Tittel, “Quartz-enhanced photoacoustic spectroscopy”, Opt. Lett. 27, 1902–1904 (2002).CrossRefADSGoogle Scholar
  55. 55.
    R.F. Curl and F.K. Tittel, “Tunable infrared laser spectroscopy”, Annu. Rep. Prog. Chem. Sect. C98, 217–270 (2002).CrossRefGoogle Scholar
  56. 56.
    F.K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy”, Springer. Topics Appl. Phys. 89, 445–510 (2003).Google Scholar
  57. 57.
    A. Kosterev, F.K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing”, Rev. Sci. Instrum. 76, 043105 (2005).CrossRefADSGoogle Scholar
  58. 58.
    M. Bugajski, K. Kosiel, A. Szerling, J. Kubacka-Traczyk, I. Sankowska, P. Karbownik, A. Trajnerowicz, E. Pruszyńska Karbownik, K. Pierściński, and D. Pierścińska, “GaAs/AlGaAs (9.4 μm) quantum cascade lasers operating at 260 K”, B. Pol. Acad. Sci-Te. 58, 471–476 (2010).Google Scholar
  59. 59.
  60. 60.
    P.C. Kamat, C.B. Roller, K. Namjou, J.D. Jeffers, A. Faramarzalian, R. Salas, and P.J. McCann, “Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer”, Appl. Opt. 46, 3969–3975 (2007).CrossRefADSGoogle Scholar
  61. 61.
    C. Wang and A. Mbi, “A new acetone detection device using cavity ringdown spectroscopy at 266 nm: evaluation of the instrument performance using acetone sample solutions”, Meas. Sci. Technol. 18, 2731–2741 (2007).CrossRefGoogle Scholar
  62. 62.
    C. Wang, A. Mbi, and M. Shepherd, “A study on breath acetone in diabetic patients using a cavity ring-down breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C”, IEEE Sens. 10, 54–63 (2010).CrossRefGoogle Scholar
  63. 63.
    C. Wang and A.B. Surampudi, “An acetone breath analyzer using cavity ring-down spectroscopy: an initial test with human subjects under various situations”, Meas. Sci. Technol. 19, 105604–105614 (2008).CrossRefADSGoogle Scholar
  64. 64.
    L.R. Narasimhan, W. Goodman, and C.K.N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis”, P. Natl. Acad. Sci. USA 98, 4617–4621 (2001).CrossRefADSGoogle Scholar
  65. 65.
    U. Lachish, S. Rotter, E. Adler, and U. El-Hanany, “Tunable diode laser based spectroscopic system for ammonia detection in human respiration”, Rev. Sci. Instrum. 58, 923–927 (1987).CrossRefADSGoogle Scholar
  66. 66.
    J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath”, Appl. Opt. 45, 9230–9237 (2006).CrossRefADSGoogle Scholar
  67. 67.
    J. Manne, W. Jager, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques”, Appl. Phys. B-Lasers O. 94, 337–344 (2009).CrossRefADSGoogle Scholar
  68. 68.
    K.L. Moskalenko, A.I. Nadezhdinskii, and I.A. Adamovskaya, “Human breath trace gas content study by tunable diode laser spectroscopy technique”, Infrared Phys. Techn. 37, 181–192 (1996).CrossRefADSGoogle Scholar
  69. 69.
    M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis”, Opt. Express 16, 2387–2397 (2008).CrossRefADSGoogle Scholar
  70. 70.
    R. Lewicki, A.A. Kosterev, Y.A. Bakhirkin, D.M. Thomazy, J. Doty, L. Dong, and F.K. Tittel, “Real time ammonia detection in exhaled human breath with a quantum cascade laser based sensor”, IEEE 978, 1–2 (2009).Google Scholar
  71. 71.
    M.M.J.W. Van Herpen, A.K.Y. Ngai, S.E. Bisson, J.H.P. Hackstein, E.J. Woltering, and F.J.M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects”, Appl. Phys. B-Lasers O. 82, 665–669 (2006).CrossRefADSGoogle Scholar
  72. 72.
    E.R. Crosson, K.N. Ricci, B.A. Richman, F.C. Chilese, T.G. Owano, R.A. Provencal, M.W. Todd, J. Glasser, A.A. Kachanow, B.A. Paldus, T.G. Spence, and R.N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath”, Anal. Chem. 74, 2003–2007 (2002).CrossRefGoogle Scholar
  73. 73.
    V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 57 μm”, Sens. Actuat. B29, 101–107 (1995).Google Scholar
  74. 74.
    G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R.F. Curl, and F.K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulphide”, Appl. Opt. 43, 6040–6046 (2004).CrossRefADSGoogle Scholar
  75. 75.
    Ch. Roller, A.A. Kosterev, F.K. Tittel, K. Uehara, C. Gmachl, and D.L. Sivco, “Carbonyl sulfide detection with a thermoelectrically cooled midinfrared quantum cascade laser”, Opt. Lett. 28, 2052–2054 (2003).CrossRefADSGoogle Scholar
  76. 76.
    M.R. McCurdy, Y. Bakhirkin, G. Wysocki, and F.K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy”, J. Biomed. Opt. 12, 034034:1–034034:9 (2007).CrossRefGoogle Scholar
  77. 77.
    R. Bartlome and M.W. Sigrist, “Laser based human breath analysis: D/H isotope ratio increases following heavy water intake”, Opt. Lett. 34, 866–868 (2009).CrossRefADSGoogle Scholar
  78. 78.
    K.R. Parameswaran, D.I. Rosen, M.G. Allen, A.M. Ganz, and T.H. Risby, “Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements”, Appl. Opt. 48, B73–B79 (2009).CrossRefADSGoogle Scholar
  79. 79.
    K.D. Skeldon, L.C. McMillan, C.A. Wyse, S.D. Monk, G. Gibson, C. Patterson,; T. France, C. Longbottom, and M.J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer”, Respir. Med. 100, 300–306 (2006).CrossRefGoogle Scholar
  80. 80.
    H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Murtz, “Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O. 72, 121–125 (2001).ADSCrossRefGoogle Scholar
  81. 81.
    G. von Basum, D. Halmer, P. Hering, M. Murtz, S. Schiller, F. Mueller, A. Popp, and F. Kuehnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer”, Opt. Lett. 29, 797–799 (2004).CrossRefADSGoogle Scholar
  82. 82.
    C.S. Patterson, L.C. McMillan, K. Stevenson, K. Radhakrishnan, P.G. Shiels, M.J. Padgett, and K.D. Skeldon, “Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy”, J. Breath Res. 1, 026005:1–026005:8 (2007).CrossRefGoogle Scholar
  83. 83.
    K.D. Skeldon, C. Patterson, C.A. Wyse, G.M. Gibson, M.J. Padgett, C. Longbottom, and L.C McMillan, “The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy”, J. Opt. A-Pure Appl. Op. 7, S376–S384 (2005).CrossRefADSGoogle Scholar
  84. 84.
    A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath”, Int. J. Environ. A. Ch. 85, 1001–1012 (2005).CrossRefGoogle Scholar
  85. 85.
    D.C. Dumitras, D.C. Dutu, C. Matei, A.M. Magureanu, M. Petrus, C. Popa, and V. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis”, Rom. Rep. Phys. 60, 593–602 (2008).Google Scholar
  86. 86.
    J.H. Miller, Y.A. Bakhirkin, T. Ajtai, F.K. Tittel, C.J. Hill, and R.Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser”, Appl. Phys. — Laser O. 85, 391–396 (2006).CrossRefADSGoogle Scholar
  87. 87.
    D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN”, Appl. Phys. B-Laser O. 72, 947–952 (2001).ADSCrossRefGoogle Scholar
  88. 88.
    H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Murtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O. 75, 311–316 (2002).CrossRefADSGoogle Scholar
  89. 89.
    M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level”, Appl. Phys. B-Lasers O. 85, 285–288 (2006).CrossRefADSGoogle Scholar
  90. 90.
    M. Horstjann, Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, C.M. Wong, C.J. Hill, and R.Q. Yang, “Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy”, Appl. Phys. B-Lasers O. 79, 799–803 (2004).CrossRefADSGoogle Scholar
  91. 91.
    D. Richter, A. Fried, B.P. Wert, J.G. Walega, and F.K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection”, Appl. Phys. B-Lasers O. 75, 281–288 (2002).CrossRefADSGoogle Scholar
  92. 92.
    L. Ciaffoni, R. Grilli, G. Hancock, A.J. Orr-Ewing, R. Peverall, and G.A.D. Ritchie, “3.5-μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module”, Appl. Phys. B-Lasers O. 94, 517–525 (2009).CrossRefADSGoogle Scholar
  93. 93.
    D. Marinov, J.M. Rey, M.G. Muller, and M.W. Sigrist, “Spectroscopic investigation of methylated amines by a cavity-ringdown-based spectrometer”, Appl. Opt. 46, 3981–3986 (2007).CrossRefADSGoogle Scholar
  94. 94.
    Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, and F.K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection”, Appl. Opt. 43, 2257–2266 (2004).CrossRefADSGoogle Scholar
  95. 95.
    K. Namjou, C.B. Roller, T.E. Reich, J.D. Jeffers, G.L. McMillen, P.J. McCann, and M.A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy”, Appl. Phys. B-Lasers O., 85, 427–435 (2006).CrossRefADSGoogle Scholar
  96. 96.
    L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B-Lasers O. 72, 859–863 (2001).ADSCrossRefGoogle Scholar
  97. 97.
    A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, and A.Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser”, Appl. Opt. 40, 5522–5529 (2001).CrossRefADSGoogle Scholar
  98. 98.
    C. Roller, K. Namjou, J.D. Jeffers, M. Camp, A. Mock, P.J. McCann, and J. Grego, “Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation”, Appl. Opt. 41, 6018–6029 (2002).CrossRefADSGoogle Scholar
  99. 99.
    K. Namjou, C.B. Roller, and G. McMillen, “Breath analysis using mid infrared tunable laser spectroscopy”, Proc. 6th Ann. IEEE Conf. on Sensors, Atlanta, GA, 1337–1340 (2007).Google Scholar
  100. 100.
    K. Heinrich, T. Fritsch, P. Hering, and M. Murtz, “Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath”, Appl. Phys. B-Lasers O. 95, 281–286 (2009).CrossRefADSGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • J. Wojtas
    • 1
    Email author
  • Z. Bielecki
    • 1
  • T. Stacewicz
    • 2
  • J. Mikołajczyk
    • 1
  • M. Nowakowski
    • 1
  1. 1.Military University of TechnologyWarsawPoland
  2. 2.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations