Skip to main content

Aspects of nanometer scale imaging with extreme ultraviolet (EUV) laboratory sources

Abstract

Imaging systems with nanometer resolution are instrumental to the development of the fast evolving field of nanoscience and nanotechnology. Decreasing the wavelength of illumination is a direct way to improve the spatial resolution in photon-based imaging systems and motivated a strong interest in short wavelength imaging techniques in the extreme ultraviolet (EUV) region. In this review paper, various EUV imaging techniques, such as 2D and 3D holography, EUV microscopy using Fresnel zone plates, EUV reconstruction of computer generated hologram (CGH) and generalized Talbot self-imaging will be presented utilizing both coherent and incoherent compact laboratory EUV sources. Some of the results lead to the imaging with spatial resolution reaching 50 nm in a very short exposure time. These techniques can be used in a variety of applications from actinic mask inspection in the EUV lithography, biological imaging to mask-less lithographic processes in nanofabrication.

This is a preview of subscription content, access via your institution.

References

  1. J.W. Giles, “Image reconstruction from a Fraunhofer X-ray hologram with visible light”, J. Opt. Soc. Am. 59, 1179 (1969)

    Article  ADS  Google Scholar 

  2. S. Aoki and S. Kikuta, “X ray holographic microscopy”, Jpn. J. Appl. Phys. 13, 1385 (1974).

    Article  ADS  Google Scholar 

  3. J.E. Trebes, S.B. Brown, E.M. Campbell, D.L. Matthews, D.G. Nilson, G.F. Stone, and D.A. Whelan, “Demonstration of X-ray holography with an X-ray laser”, Science 238, 517 (1987).

    Article  ADS  Google Scholar 

  4. C. Jacobsen, M. Howells, J. Kirz, and S. Rothman, “X-ray holographic microscopy using photoresists”, J. Opt. Soc. Am. A7, 1847–1861 (1990).

    Article  ADS  Google Scholar 

  5. S. Lindaas, H. Howells, C. Jacobsen, and A. Kalinovsky, “X-ray holographic microscopy by means of photoresist recording and atomic-force microscope readout”, J. Opt. Soc. Am. A13, 1788–1800 (1996).

    Article  ADS  Google Scholar 

  6. R.A. Bartels, A. Paul, H. Green, H.C. Kapteyn, M.M. Murnane, S. Backus, I.P. Christov, Y.W. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths”, Science 297, 376–378 (2002).

    ADS  Google Scholar 

  7. A.S. Morlens, J. Gautier, G. Rey, P. Zeitoun, J.P. Caumes, M. Kos-Rosset, H. Merdji, S. Kazamias, K. Casson, and M. Fajardo, “Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics”, Opt. Lett. 31, 3095–3097 (2006).

    Article  ADS  Google Scholar 

  8. R.I. Tobey, M.E. Siemens, O. Cohen, M.M. Murnane, H.C. Kapteyn, and K.A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation”, Opt. Lett. 32, 286–288 (2007).

    Article  ADS  Google Scholar 

  9. M.R. Howells and C. Jacobsen, “Possibilities for projection X-ray lithography using holographic optical elements”, Appl. Optics 30, 1580–1582 (1991).

    Article  ADS  Google Scholar 

  10. Y. Cheng, A. Isoyan, J. Wallace, M. Khan, and F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results”, Appl. Phys. Lett. 90, 023116 (2007).

    Article  ADS  Google Scholar 

  11. Ch. Zanke, M. Qi, and H.I. Smith, “Large-area patterning for photonic crystals via coherent diffraction lithography”, J. Vac. Sci. Technol. B22, 3352 (2004).

    Google Scholar 

  12. J.W. Miao, H.N. Chapman, J. Kirz, D. Sayre, and K.O. Hodgson, “Taking X-ray diffraction to the limit: Macromolecular structures from femtosecond X-ray pulses and diffraction microscopy of cells with synchrotron radiation”, Annu. Rev. Biophys. Biomolecular Structure 33, 157 (2004).

    Article  Google Scholar 

  13. J.W. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens”, Nature 400, 342–344 (1999).

    Article  ADS  Google Scholar 

  14. J. Miao, C. Chen, C. Song, Y. Nishino, Y. Kohmura, T. Ishikawa, D. Ramunno-Johnson, T. Lee, and S.H. Risbud, “Three-dimensional GaN-Ga2O3 core shell structure revealed by X-ray diffraction microscopy”, Phys. Rev. Lett. 97, 215503 (2006).

    Article  ADS  Google Scholar 

  15. S. Eisebitt, J. Luning, W.F. Schlotter, M. Lorgen, O. Hellwig, W. Eberhardt, and J. Stohr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography”, Nature 432, 885 (2004).

    Article  ADS  Google Scholar 

  16. D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A.M. Neiman, and D. Sayre, “Biological imaging by soft x-ray diffraction microscopy”, Proc. of the National Academy of Sciences of the United States of America 102, 15343 (2005).

    Article  ADS  Google Scholar 

  17. S. Elsebitt, W.F. Schlotter, M. Lorgen, O. Hellwig, W. Eberhardt, and J. Stohr, “Lensless imaging of magnetic nanostructures by x-ray spectro holography”, Nature 432, 885 (2004).

    Article  ADS  Google Scholar 

  18. J.W. Miao, K.O. Hodgson, and D. Sayre, “An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images”, Proc. of the National Academy of Sciences of the United States of America 98, 6641 (2001).

    Article  ADS  Google Scholar 

  19. H.N. Chapman, A. Barty, M.J. Bogan, S. Boutet, M. Frank, and S.P. Hau-Riege, “Femtosecond diffractive imaging with a soft-X-ray free-electron laser”, Nat. Phys. 2, 839 (2006).

    Article  Google Scholar 

  20. D.S. DiCicco, D. Kim, R. Rosser, and S. Suckewer, “First stage in the development of a soft-x-ray reflection imaging microscope in the Schwarzschild configuration using a soft-x-ray laser at 18.2 nm”, Opt. Lett. 17, 157 (1992).

    Article  ADS  Google Scholar 

  21. L.B. Da Silva, J.E. Trebes, S. Mrowka, T.W. Barbee, Jr., J. Brase, J.A. Koch, R.A. London, B.J. MacGowan, D.L. Matthews, D. Minyard, G. Stone, T. Yorkey, E. Anderson, D.T. Attwood, and D. Kern, “Demonstration of x-ray microscopy with an x-ray laser operating near the carbon K edge”, Opt. Lett. 17, 754 (1992).

    Article  ADS  Google Scholar 

  22. M. Wieland, C. Spielmann, U. Kleineberg, T. Westerwalbesloh, U. Heinzmann, and T. Wilhein, “Toward time-resolved soft X-ray microscopy using pulsed fs-high-harmonic radiation”, Ultramicroscopy 102, 93 (2005).

    Article  Google Scholar 

  23. M. Kishimoto, M. Tanaka, R. Tai, K. Sukegawa, M. Kado, N. Hasegawa, H. Tang, T. Kawachi, P. Lu, K. Nagashima, H. Daido, Y. Kato, K. Nagai, and H. Takenaka, “Development of soft X-ray microscopy system using X-ray laser in JAERI Kansai”, J. Phys. IV 104, 141 (2003).

    Google Scholar 

  24. I.A. Artioukov, A.V. Vinogradov, V.E. Asadchikov, Y.S. Kasyanov, R.V. Serov, A.I. Fedorenko, V.V. Kondratenko, and S.A. Yulin, “Schwarzschild soft-x-ray microscope for imaging of nonradiating objects”, Opt. Lett. 20, 2451 (1995).

    Article  ADS  Google Scholar 

  25. G. Vaschenko, F. Brizuela, C. Brewer, M. Grisham, H. Mancini, C.S. Menoni, M.C. Marconi, J.J. Rocca, W. Chao, J.A. Liddle, E.H. Anderson, D.T. Attwood, A.V. Vinogradov, I.A. Artioukov, Y.P. Pershyn, and V.V. Kondratenko, “Nanoimaging with a compact extreme-ultraviolet laser”, Opt. Lett. 30, 2095 (2005).

    Article  ADS  Google Scholar 

  26. G. Vaschenko, C. Brewer, F. Brizuela, Y. Wang, M.A. Larotonda, B.M. Luther, M.C. Marconi, J.J. Rocca, and C.S. Menoni, “Sub-38-nm resolution table top microscopy with 13 nm wavelength laser light”, Opt. Lett. 31, 1214 (2006).

    Article  ADS  Google Scholar 

  27. K.W. Kim, Y. Kwon, K.Y. Nam, J.H. Lim, K.G. Kim, K.S. Chon, B.H. Kim, D.E. Kim, J.G. Kim, B.N. Ahn, H.J. Shin, S. Rah, K.H. Kim, J.S. Chae, D.G. Gweon, D.W. Kang, S.H. Kang, J.Y. Min, K.S. Choi, S.E. Yoon, E.A. Kim, Y. Namba, and K.H. Yoon, “Compact soft x-ray transmission microscopy with sub-50 nm spatial resolution”, Phys. Med. Biol. 51, N99–N107 (2006).

    Article  Google Scholar 

  28. M. Berglund, L. Rymell, M. Peuker, T. Wilhein, and H.M. Hertz, “Compact water-window transmission X-ray microscopy”, J. Microsc. 197, 268 (2000).

    Article  Google Scholar 

  29. G.A. Johansson, A. Holmberg, H.M. Hertz, and M. Berglund, “Design and performance of a laser-plasma based compact soft x-ray microscope”, Rev. Sci. Instrum. 73, 1193 (2002).

    Article  ADS  Google Scholar 

  30. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E.H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy”, Opt. Express 17, 17699 (2009).

    ADS  Google Scholar 

  31. S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-X-ray microscopy with zone plates in high orders of diffraction”, Phys. Rev. Lett. 103, 110801 (2009).

    Article  ADS  Google Scholar 

  32. B.L. Mesler, P. Fischer, W. Chao, E.H. Anderson, and D.H. Kim, “Soft x-ray imaging of spin dynamics at high spatial and temporal resolution”, J. Vac. Sci. Technol. B25, 2598 (2007).

    Google Scholar 

  33. P. Fischer, D.H. Kim, B.L. Mesler, W. Chao, and E.H. Anderson, “Magnetic soft X-ray microscopy: Imaging spin dynamics at the nanoscale”, J. Magn. Magn. Mater. 310, 2689 (2007).

    Article  ADS  Google Scholar 

  34. P. Fischer, D.H. Kim, W. Chao, J.A. Liddle, E.H. Anderson, and D.T. Attwood, “Soft X-ray microscopy of nanomagnetism”, Mater. Today 9, 1–2 (2006).

    Article  Google Scholar 

  35. D.H. Kim, P. Fischer, W. Chao, E. Anderson, M.Y. Im, S.Ch. Shin, and S.B. Choe, “Magnetic soft x-ray microscopy at 15-nm resolution probing nanoscale local magnetic hysteresis (invited)”, J. Appl. Phys. 99, 08H303 (2006).

    Article  Google Scholar 

  36. J.J. Rocca, V. Shlyaptsev, F.G. Tomasel, O.D. Cortázar, D. Hartshorn, and J.L.A. Chilla, “Demonstration of a discharge pumped table-top soft-X-ray laser”, Phys. Rev. Lett. 73, 2192 (1994).

    Article  ADS  Google Scholar 

  37. B.R. Benware, C.D. Macchietto, C.H. Moreno, and J.J. Rocca, “Demonstration of a high average power tabletop soft X-ray laser”, Phys. Rev. Lett. 81, 5804 (1998).

    Article  ADS  Google Scholar 

  38. C.D. Macchietto, B.R. Benware, and J.J. Rocca, “Generation of millijoule-level soft-x-ray laser pulses at a 4-Hz repetition rate in a highly saturated tabletop capillary discharge amplifier”, Opt. Lett. 24, 1115–1117 (1999).

    Article  ADS  Google Scholar 

  39. S. Heinbuch, M. Grisham, D. Martz, and J.J. Rocca, “Demonstration of a desk-top size high repetition rate soft x-ray laser”, Opt. Express 13, 4050–4055 (2005).

    Article  ADS  Google Scholar 

  40. Y. Liu, M. Seminario, F.G. Tomasel, C. Chang, J.J. Rocca, and D. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser”, Phys. Rev. A6303, 033802 (2001).

    ADS  Google Scholar 

  41. C.A. Brewer, F. Brizuela, P. Wachulak, D.H. Martz, W. Chao, E.H. Anderson, D.T. Attwood, A.V. Vinogradov, I.A. Artyukov, A.G. Ponomareko, V.V. Kondratenko, M.C. Marconi, J.J. Rocca, and C.S. Menoni, “Single-shot extreme ultraviolet laser imaging of nanostructures with wavelength resolution”, Opt. Lett. 33, 518 (2008), Virtual Journal for Biomedical Optics 3, 4 (2008) and in Virtual Journal of Nanoscale Science & Technology 17, 15 (2008).

    Article  ADS  Google Scholar 

  42. H. Fiedorowicz, A. Bartnik, R. Jarocki, J. Kostecki, J. Krzywinski, J. MikoŁajczyk, R. Rakowski, A. Szczurek, and M. Szczurek, “Compact laser plasma EUV source based on a gas puff target for metrology applications”, J. Alloy. Compd. 401, 99–103 (2005).

    Article  Google Scholar 

  43. H. Fiedorowicz, A. Bartnik, Z. Patron, and P. Parys, “X-ray emission from laser-irradiated gas puff targets”, Appl. Phys. Lett. 62, 2778 (1993).

    Article  ADS  Google Scholar 

  44. H. Fiedorowicz, A. Bartnik, R. Jarocki, R. Rakowski, and M. Szczurek, “Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup”, Appl. Phys. Lett. 70, 305 (2000).

    Google Scholar 

  45. H. Fiedorowicz, A. Bartnik, H. Daido, I.W. Choi, M. Suzuki, and S. Yamagami, “Strong extreme ultraviolet emission from a double-stream xenon/helium gas puff target irradiated with a Nd:YAG laser”, Opt. Commun. 184, 161 (2000).

    Article  ADS  Google Scholar 

  46. R. Rakowski, A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, J. Krzywiński, J. MikoŁajczyk, L. Pina, L. Ryć, M. Szczurek, H. Ticha, and P. Wachulak, “Metrology of Mo/Si multilayer mirrors at 13.5 nm with the use of a laser-produced plasma extreme ultraviolet (EUV) source based on a gas puff target”, Opt. Appl. 36, 593–600 (2006).

    Google Scholar 

  47. P.W. Wachulak, A. Bartnik, H. Fiedorowicz, T. Feigl, R. Jarocki, J. Kostecki, R. Rakowski, P. Rudawski, M. Sawicka, M. Szczurek, A. Szczurek, and Z. Zawadzki, “A compact, quasi-monochromatic laser-plasma EUV source based on a double stream gas puff target at 13.8 nm wavelength”, Appl. Phys. B100, 461–469 (2010).

    ADS  Google Scholar 

  48. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, A. Szczurek, and M. Szczurek, “Ablation and surface modifications of PMMA using a laser-plasma EUV source”, Appl. Phys. B96, 4 (2009).

    Google Scholar 

  49. P. Wachulak, R. Bartels, M.C. Marconi, C.S. Menoni, J.J. Rocca, Y. Lu, and B. Parkinson, “Sub 400 nm spatial resolution extreme ultraviolet holography with a table top laser”, Opt. Express 14, 9636–9642 (2006).

    Article  ADS  Google Scholar 

  50. P. Wachulak, M.C. Marconi, R. Bartels, C.S. Menoni, and J.J. Rocca, “Volume extreme ultraviolet holographic imaging with numerical optical sectioning”, Opt. Express 15, 10622–10628 (2007).

    Article  ADS  Google Scholar 

  51. P.W. Wachulak, M.C. Marconi, R.A. Bartels, C.S. Menoni, and J.J. Rocca, “Soft x-ray laser holography with wavelength resolution”, J. Opt. Soc. Am. B25, 1811 (2008).

    ADS  Google Scholar 

  52. J. Goodman, Introduction to Fourier Optics, McGraw Hill, 1996.

  53. U. Schnars and W.P.O. Juptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography”, Appl. Opt. 33, 4373–4377 (1994).

    Article  ADS  Google Scholar 

  54. U. Schnars and W.P.O. Juptner, “Digital recording and numerical reconstruction of holograms”, Meas. Sci. Technol. 13, R85–R101 (2002).

    Article  ADS  Google Scholar 

  55. A.C.F. Hoole, M.E. Welland, and A.N. Broers, “Negative PMMA as a high-resolution resist the limits and possibilities”, Semicond. Sci. Tech. 12, 1166–1170 (1997).

    Article  ADS  Google Scholar 

  56. K. Yamazaki, T. Yamaguchi, and H. Namatsu, “Three-dimensional nanofabrication with 10-nm resolution”, Jpn. J. Appl. Phys. 43, L1111–L1113 (2004).

    Article  ADS  Google Scholar 

  57. P.W. Wachulak, M.C. Marconi, R.A. Bartels, C.S. Menoni, and J.J. Rocca, “Holographic imaging with a nanometer resolution using compact table-top EUV laser”, Opto-Electron. Rev. 18, 28–38 (2010).

    Article  Google Scholar 

  58. J.M. Heck, D.T. Attwood, W. Meyer-Ilse, and E.H. Anderson, “Resolution determination in X-ray microscopy: an analysis of the effects of partial coherence and illumination spectrum”, J. X-ray Sci. Technol. 8, 95 (1998).

    Google Scholar 

  59. P.W. Wachulak, C.A. Brewer, F. Brizuela, W. Chao, E.H. Anderson, R.A. Bartels, C.S. Menoni, J.J. Rocca, and M.C. Marconi, “Simultaneous determination of feature size and resolution in soft x-ray microscopy images”, J. Opt. Soc. Am. B25, B20–B26 (2008).

    ADS  Google Scholar 

  60. CXRO, “http://www-cxro.lbl.gov/”.

  61. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation, Cambridge University Press, 1999.

  62. A. Isoyan, F. Jian, Y. Cheng, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, M.C. Marconi, and F. Cerrina, “Coherent imaging nano-patterning with extreme ultraviolet laser illumination”, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Opt. Soc. Am., 2009), paper JFA7, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-JFA7

  63. A. Isoyan, F. Jiang, Y.C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures”, J. Vac. Sci. Technol. B27, 2931–2937 (2009).

    Google Scholar 

  64. P.W. Wachulak, A. Bartnik, and H. Fiedorowicz, “Sub-70 nm resolution table top microscopy at 13.8 nm using a compact laser-plasma EUV source”, Opt. Lett. 35, 2337–2339 (2010).

    Article  ADS  Google Scholar 

  65. P.W. Wachulak, A. Bartnik, H. Fiedorowicz, and J. Kostecki, “A 50-nm spatial resolution EUV imaging-resolution dependence on object thickness and illumination bandwidth”, Opt. Express 19, 9541–9550 (2011).

    Article  ADS  Google Scholar 

  66. Y. Wang, E. Granados, M.A. Larotonda, M. Berrill, B.M. Luther, D. Patel, C.S. Menoni, and J.J. Rocca, “High-brightness injection-seeded soft-x-ray-laser amplifier using a solid target”, Phys. Rev. Lett. 97, 123901 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Wachulak.

About this article

Cite this article

Wachulak, P.W., Marconi, M.C., Isoyan, A. et al. Aspects of nanometer scale imaging with extreme ultraviolet (EUV) laboratory sources. Opto-Electron. Rev. 20, 1–14 (2012). https://doi.org/10.2478/s11772-012-0008-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-012-0008-z

Keywords

  • EUV holography
  • computer generated holograms
  • Talbot imaging
  • lens-less diffraction imaging
  • Fresnel zone plate microscopy
  • nanometer resolution
  • coherent EUV imaging
  • incoherent EUV imaging