Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers

Abstract

Metal-dielectric layered stacks for imaging with sub-wavelength resolution are regarded as linear isoplanatic systems — a concept popular in Fourier optics and in scalar diffraction theory. In this context, a layered flat lens is a one-dimensional spatial filter characterised by the point spread function. However, depending on the model of the source, the definition of the point spread function for multilayers with sub-wavelength resolution may be formulated in several ways. Here, a distinction is made between a soft source and hard electric or magnetic sources. Each of these definitions leads to a different meaning of perfect imaging. It is shown that some simple interpretations of the PSF, such as the relation of its width to the resolution of the imaging system are ambiguous for the multilayers with sub-wavelenth resolution. These differences must be observed in point spread function engineering of layered systems with sub-wavelength sized PSF.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  2. 2.

    S.A. Ramakrishna, J.B. Pendry, D. Schurig, D.R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens”, J. Mod. Opt. 49, 1747–1762 (2002).

    MATH  Article  ADS  Google Scholar 

  3. 3.

    N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction—limited optical imaging with a silver superlens”, Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  4. 4.

    D.O. Melville and R.J. Blaikie, “Super-resolution imaging through a planar silver layer”, Opt. Express 13, 2127–2134 (2005).

    Article  ADS  Google Scholar 

  5. 5.

    S.A. Ramakrishna and J.B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain”, Phys. Rev. B67, 201101 (2003).

    ADS  Google Scholar 

  6. 6.

    B. Saleh and M. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc, 2nd ed. (2007).

  7. 7.

    J.W. Goodman, Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed. (2005).

  8. 8.

    B. Lee, Ph. Lalanne, and Y. Fainman, “Plasmonic diffractive optics and imaging: feature introduction”, Appl. Optics 49, PDO1–PDO1 (2010), (together with the contents of the topical issue of Appl. Optics 49 on “Plasmonic diffractive optics and imaging”, Information Processing, 2010.

    Article  Google Scholar 

  9. 9.

    A. Wood, J.B. Pendry, and D.P. Tsai, “Directed subwave-length imaging using a layered metal-dielectric system”, Phys. Rev. B74, 115116 (2006).

    ADS  Google Scholar 

  10. 10.

    M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, and J. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks”, Opt. Express 15, 508–523 (2007).

    Article  ADS  Google Scholar 

  11. 11.

    D. de Ceglia, M.A. Vincenti, M.G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. Haus, M.J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superre-solution and superguiding applications in the visible and near-IR ranges”, Phys. Rev. A77, 033848 (2008).

    ADS  Google Scholar 

  12. 12.

    N.D. Mattiucci, D’Aguanno, M. Scalora, M.J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to super-resolution”, Opt. Express 17, 17517–17529 (2009).

    Article  ADS  Google Scholar 

  13. 13.

    P.A. Belov, C. Simovski, and P. Ikonen, “Canalization of subwavelength images by electro-magnetic crystals”, Phys. Rev. B71, 193105 (2005).

    ADS  Google Scholar 

  14. 14.

    P.A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime”, Phys. Rev. B73, 113110 (2006).

    ADS  Google Scholar 

  15. 15.

    X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007).

    ADS  Google Scholar 

  16. 16.

    R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes”, J. Opt. A-Pure Appl. Op. 11, 015001 (2009).

    Article  ADS  Google Scholar 

  17. 17.

    R. Kotynski and T. Stefaniuk, “Multiscale analysis of sub-wavelength imaging with metal-dielectric multilayers”, Opt. Lett. 35, 1133–1135 (2010).

    Article  Google Scholar 

  18. 18.

    R. Kotynski, T. Stefaniuk, and A. Pastuszczak, “Sub-wave-length diffraction-free imaging with low-loss metal-dielectric multilayers”, ArXiv:1002.0658. (2010).

  19. 19.

    A.M. Conforti, M. Guasoni, and C.D. Angelis, “Subwave-length diffraction management”, Opt. Lett. 33, 2662 (2008).

    Article  ADS  Google Scholar 

  20. 20.

    O. Melville and R.J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography”, J. Opt. Soc. Am. B23, 461–467 (2006).

    ADS  Google Scholar 

  21. 21.

    C.P. Moore, R.J. Blaikie, and M.D. Arnold, “An improved transfer-matrix model for optical superlenses”, Opt. Express 17, 14260–14269 (2009).

    Article  ADS  Google Scholar 

  22. 22.

    D.O.S. Melville and R.J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography”, J. Opt. Soc. Am. B23, 461–467 (2006).

    ADS  Google Scholar 

  23. 23.

    P. Wrobel, J. Pniewski, T.J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by concentrically corrugated silver film without a hole”, Phys. Rev. Lett. 102, 183902 (2009).

    Article  ADS  Google Scholar 

  24. 24.

    C.P. Moore, R.J. Blaikie, and M.D. Arnold, “An improved transfer-matrix model for optical superlenses”, Opt. Express 17, 14260–14269 (2009).

    Article  ADS  Google Scholar 

  25. 25.

    X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007).

    ADS  Google Scholar 

  26. 26.

    M.A. Vincenti, A. D’Orazio, M.G. Cappeddu, N. Akozbek, M.J. Bloemer, and M. Scalora, “Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies”, J. Appl. Phys. 105, 103103 (2009).

    Article  ADS  Google Scholar 

  27. 27.

    C.P. Moore, M.D. Arnold, P.J. Bones, and R.J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses”, J. Opt. Soc. Am. A25, 911–918 (2008).

    Article  ADS  Google Scholar 

  28. 28.

    Q.M. Quan, S.L. Zhu, and R.P. Wang, “Refraction in the fixed direction at the surface of dielectric/silver superlattice”, Phys. Lett. A359, 547–549 (2006).

    ADS  Google Scholar 

  29. 29.

    X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites”, J. Opt. Soc. Am. A26, 2521–2525 (2009).

    Article  Google Scholar 

  30. 30.

    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals”, Appl. Phys. Lett. 74, 1212 (1999).

    Article  ADS  Google Scholar 

  31. 31.

    R. Kotyśki, K. Król, J. Pniewski, and K. Panajotov, “Analysis of two-dimensional polarisation-coupled impulse response in multilayered metallic flat lens”, Proc. SPIE 6987, 69870G (2008).

    Article  Google Scholar 

  32. 32.

    Handbook of Optical Constants of Solids, edited by A. Palik, Academic Press, 1998.

  33. 33.

    P. Markos and C.M. Soukoulis, Wave Propagation from Electrons to Photonic Crystals and Left-Handed Materials, Princeton University Press, Princeton and Oxford, 2008.

    Google Scholar 

  34. 34.

    P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972).

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Kotyński.

About this article

Cite this article

Kotyński, R. Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers. Opto-Electron. Rev. 18, 366–375 (2010). https://doi.org/10.2478/s11772-010-0044-5

Download citation

Keywords

  • superresolution
  • supercollimation
  • linear isoplanatic systems
  • point spread function engineering