Corrugated SNOM probe with enhanced energy throughput

Abstract

In a previous paper we proposed a modification of metal-coated tapered-fibre aperture probes for scanning near-field optical microscopes (SNOMs). The modification consists in radial corrugations of the metal-dielectric interface oriented inward the core. Their purpose is to facilitate the excitation of surface plasmons, which increase the transport of energy beyond the cut-off diameter and radiate a quasi-dipolar field from the probe output rim. An increase in energy output allows for reduction of the apex diameter, which is the main factor determining the resolution of the microscope. In two-dimensional finite-difference time-domain (FDTD) simulations we analyse the performance of the new type of SNOM probe. We admit, however, that the two-dimensional approximation gives better results than expected from exact three-dimensional ones. Nevertheless, optimisation of enhanced energy throughput in corrugated probes should lead to at least twice better resolution with the same sensitivity of detectors available nowadays.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E.H. Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region, Philos. Mag. 6, 356–362 (1928).

    Google Scholar 

  2. 2.

    D.W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution l/20, Appl. Phys. Lett. 44, 651–653 (1984).

    Article  ADS  Google Scholar 

  3. 3.

    E. Betzig, P.L. Finn, and J.S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60, 2484–2486 (1992).

    Article  ADS  Google Scholar 

  4. 4.

    M. Ohtsu, Near-Field Nano/Atom Optics and Technology, Springer, Tokyo, 1998.

    Google Scholar 

  5. 5.

    J. Kim and K.B. Song, “Recent progress of nano-technology with NSOM”, Micron 38, 409–426 (2007).

    Article  Google Scholar 

  6. 6.

    L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  7. 7.

    L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E50, 4094–4196 (1994).

    ADS  Google Scholar 

  8. 8.

    K.Y. Kim, Y.K. Cho, H.S. Tae, and J.H. Lee, “Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes”, Opto-Electron. Rev. 14, 233–241 (2006).

    Article  ADS  Google Scholar 

  9. 9.

    A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching”, Rev. Sci. Instrum. 74, 3679–3683 (2003).

    Article  ADS  Google Scholar 

  10. 10.

    L.H. Haber, R.D. Schaller, J.C. Johnson, and R.J. Saykally, “Shape control of near-field probes using dynamic meniscus etching”, J. Microsc. 214, 27–35 (2004).

    Article  MathSciNet  Google Scholar 

  11. 11.

    J. Yang, J. Zhang, Z. Li, and Q. Gong, “Fabrication of high-quality SNOM probes by pre-treating the fibres before chemical etching”, J. Microsc. 228, 40–44 (2007).

    Article  Google Scholar 

  12. 12.

    T. Yatsui, M. Kourogi, and M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure”, Appl. Phys. Lett. 71, 1756–1758 (1997).

    Article  ADS  Google Scholar 

  13. 13.

    S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber”, Opt. Commun. 146, 45–48 (1998).

    Article  ADS  Google Scholar 

  14. 14.

    T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure”, Appl. Phys. Lett. 73, 2090–2092 (1998).

    Article  ADS  Google Scholar 

  15. 15.

    P. Grabiec, T. Gotszalk, J. Radojewski, K. Edinger, N. Abedinov, and I.W. Rangelow, “SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis”, Microelectron. Eng. 61/62, 981–986 (2002).

    Article  Google Scholar 

  16. 16.

    S. Bargiel, D. Heinis, Ch. Gorecki, A. Gorecka-Drzazga, J.A. Dziuban, and M. Jozwik, “A micromachined silicon-based probe for a scanning near-field optical microscope on-chip”, Meas. Sci. Technol. 17, 32–37 (2006).

    Article  ADS  Google Scholar 

  17. 17.

    W.C.L. Hopman, R. Stoffer, and R.M. de Ridder, “High-resolution measurement of resonant wave patterns by perturbing the evanescent field using a nanosized probe in a transmission scanning near-field optical microscopy configuration”, J. Lightwave Technol. 25, 1811–1818 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-7-1811

    Article  ADS  Google Scholar 

  18. 18.

    E.X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture”, Appl. Phys. Lett. 86, 111106 (2005).

    Article  ADS  Google Scholar 

  19. 19.

    K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons”, Opt. Express 14, 832–846 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-832

    Article  ADS  Google Scholar 

  20. 20.

    T.J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope”, Opt. Express 15, 10920–10928 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-17-10920

    Article  ADS  Google Scholar 

  21. 21.

    A. Drezet, S. Huant, and J.C. Woehl, “In situ characterization of optical tips using single fluorescent nanobeads”, J. Lumin. 107, 176–181 (2004).

    Article  Google Scholar 

  22. 22.

    T.J. Antosiewicz and T. Szoplik, “Description of near-and far-field light emitted from a metal-coated tapered fiber tip”, Opt. Express 15, 7845–7852 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7845

    Article  ADS  Google Scholar 

  23. 23.

    C. Sönnichsen, “Plasmons in metal nanostructures”, PhD Thesis Ludwig-Maximilians-Universtät München, München, (2001).

    Google Scholar 

  24. 24.

    P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972).

    ADS  Google Scholar 

  25. 25.

    W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice”, Opt. Express 13, 4818–4827 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4818

    Article  ADS  Google Scholar 

  26. 26.

    S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

    Google Scholar 

  27. 27.

    A. Drezet, M.J. Nasse, S. Huant, and J.C. Woehl, “The optical near-field of an aperture tip”, Europhys. Lett. 66, 41–47 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. J. Antosiewicz.

About this article

Cite this article

Antosiewicz, T.J., Szoplik, T. Corrugated SNOM probe with enhanced energy throughput. Opto-Electron. Rev. 16, 451–457 (2008). https://doi.org/10.2478/s11772-008-0048-6

Download citation

Keywords

  • scanning near-field optical microscope - SNOM
  • SNOM resolution
  • SNOM probes
  • photon-plasmon coupling
  • tapered-fibre metal-coated corrugated SNOM probes