Skip to main content
Log in

Wavelength and polarization selective multi-band tunnelling quantum dot detectors

  • Regular Papers
  • Published:
Opto-Electronics Review

Abstract

The reduction of the dark current without reducing the photocurrent is a considerable challenge in developing far-infrared (FIR)/terahertz detectors. Since quantum dot (QD) based detectors inherently show low dark current, a QD-based structure is an appropriate choice for terahertz detectors. The work reported here discusses multi-band tunnelling quantum dot infrared photo detector (T-QDIP) structures designed for high temperature operation covering the range from mid-to far-infrared. These structures grown by molecular beam epitaxy consist of a QD (InGaAs or InAlAs) placed in a well (GaAs/AlGaAs) with a double-barrier system (AlGaAs/InGaAs/AlGaAs) adjacent to it. The photocurrent, which can be selectively collected by resonant tunnelling, is generated by a transition of carriers from the ground state in the QD to a state in the well coupled with a state in the double-barrier system. The double-barrier system blocks the majority of carriers contributing to the dark current. Several important properties of T-QDIP detectors such as the multi-colour (multi-band) nature of the photoresponse, the selectivity of the operating wavelength by the applied bias, and the polarization sensitivity of the response peaks, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.E. Haller, “Advanced far-infrared detectors”, Infrared Phys. 35, 127–146 (1994).

    Article  Google Scholar 

  2. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femto-second optical pulses”, Appl. Phys. Lett. 86, 163504-3 (2005).

    Google Scholar 

  3. H.C. Liu, C.Y. Song, A.J. Spring Thorpe, and J.C. Cao, “Terahertz quantum-well photo detector”, Appl. Phys. Lett. 84, 4068 (2004).

    Article  ADS  Google Scholar 

  4. M.B.M. Rinzan, A.G.U. Perera, S.G. Matsik, H.C. Liu, Z.R. Wasilewski, and M. Buchanan, “AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold”, Appl. Phys. Lett. 86, 071112 (2005).

    Google Scholar 

  5. P. Bhattacharya, X.H. Su, S. Chakrabarti, G. Ariyawansa, and A.G.U. Perera, “Characteristics of a tunnelling quantum-dot infrared photo detector operating at room temperature”, Appl. Phys. Lett. 86, 191106 (2005).

    Google Scholar 

  6. X.H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “Terahertz detection with tunnelling quantum dot intersublevel photodetector”, Appl. Phys. Lett. 89, 031117 (2006).

    Google Scholar 

  7. A. Goldberg, P.N. Uppal, and M. Winn, “Detection of buried land mines using a dual-band LWIR/LWIR QWIP focal plane array”, Infrared Physics & Technology 44, 427 (2003).

    Article  ADS  Google Scholar 

  8. H. Jiang and J. Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study”, Phys. Rev. B56, 4696 (1998).

    ADS  Google Scholar 

  9. R.M. Martin, “Elastic properties of ZnS structure semiconductors”, Phys. Rev. B1, 4005 (1969).

    ADS  Google Scholar 

  10. P.N. Keating, “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure”, Phys. Rev. 145, 637 (1966).

    Article  ADS  Google Scholar 

  11. E. Anemogiannis, N. Glytsis, and T.K. Gaylord, “Quasibound states determination using a perturbed wavenumbers method in a large quantum box”, IEEE. J. Quant. Electron. 33, 742 (1997).

    Article  Google Scholar 

  12. S. Krishna, G. von Winckel, S. Raghavan, A. Stintz, G. Ariyawansa, S.G. Matsik, and A.G.U. Perera, “Three-colour (λ p1∼3.8 μm, λ p2∼8.5 μm, and λ p3∼23.2 μm) InAs/InGaAs quantum dots in a well detectors”, Appl. Phys. Lett. 83, 2745 (2003).

    Article  ADS  Google Scholar 

  13. J. Urayama, T.B. Norris, J. Singh, and P. Bhattacharya, “Observation of phonon bottleneck in quantum dot electronic relaxation”, Phys. Rev. Lett. 86, 4930 (2001).

    Article  ADS  Google Scholar 

  14. M. Larive, L. Collot, S. Breugnot, H. Botma, and P. Roos, “Laid and flush-buried mines detection using 8–12 μm polarimetric imager”, Proc. SPIE 3392, 115 (1998).

    Article  ADS  Google Scholar 

  15. B.A. Barbour, M.W. Jones, H.B. Barnes, and C.P. Lewis, “Passive IR polarization sensors: a new technology for mine detection”, Proc. SPIE 3392, 96 (1998).

    Article  ADS  Google Scholar 

  16. B. Aslan, H.C. Liu, J.A. Gupta, Z.R. Wasiewski, G.C. Aers, S. Raymond, and M. Buchanan, “Observation of resonant tunnelling through a self-assembled InAs quantum dot layer”, Appl. Phys. Lett. 88, 043103 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. U. Perera.

About this article

Cite this article

Perera, A.G.U., Ariyawansa, G., Apalkov, V.M. et al. Wavelength and polarization selective multi-band tunnelling quantum dot detectors. Opto-Electron. Rev. 15, 223–228 (2007). https://doi.org/10.2478/s11772-007-0024-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-007-0024-6

Keywords

Navigation