Energy transport in plasmon waveguides on chains of metal nanoplates


An interest in energy transport in 3D chains of metal nanoparticles is oriented towards future applications in nanoscale optical devices. We consider plasmonic waveguides composed of silver nanoplates arranged in several geometries to find the one with the lowest attenuation. We investigate light propagation of 500-nm wavelength along different chains of silver nanoplates of subwavelength length and width and wavelength-size height. Energy transmission of the waveguides is analysed in the range of 400–2000 nm. We find that chain of short parallel nanoplates guides energy better than two electromagnetically coupled continuous stripes and all other considered nonparallel structures. In a wavelength range of 500–600 nm, this 2-μm long 3D waveguide transmits 39% of incident energy in a channel of λ × λ/2 cross section area.

This is a preview of subscription content, log in to check access.


  1. 1.

    H. Raether, Surface Plasmons, Springer, Berlin, 1988.

    Google Scholar 

  2. 2.

    C. Sönnichsen, “Plasmons in metal nanostructures”, PhD Thesis, Ludwig-Maximilians-Universität München, München, 2001.

    Google Scholar 

  3. 3.

    A.V. Zayats and I.I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons”, J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).

    Article  ADS  Google Scholar 

  4. 4.

    W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  5. 5.

    D. Sarid, “Long-range surface-plasma waves on very thin metal films”, Phys. Rev. Lett. 47, 1927–1930 (1981).

    Article  ADS  Google Scholar 

  6. 6.

    J.J. Burke, G.I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films”, Phys. Rev. B33, 5286–5301 (1986).

    ADS  Google Scholar 

  7. 7.

    W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, “Photonic surfaces for surface-plasmon polaritons”, J. Opt. Soc. Am. A14, 1654–1661 (1997).

    ADS  Google Scholar 

  8. 8.

    M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles”, Opt. Lett. 23, 1331–1333 (1998).

    ADS  Google Scholar 

  9. 9.

    J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles”, Phys. Rev Lett. 82, 2590–2593 (1999).

    Article  ADS  Google Scholar 

  10. 10.

    J.C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light”, Phys. Rev. B60, 9061–9068 (1999).

    ADS  Google Scholar 

  11. 11.

    B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J.C. Weeber, “Surface plasmon propagation in microscale metal stripes”, Appl. Phys. Lett. 79, 51–53 (2001).

    Article  ADS  Google Scholar 

  12. 12.

    J.C. Weeber, J.R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes”, Phys. Rev. B, 64045411 (2001).

  13. 13.

    J.C. Weeber, M.U. González, A.L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips”, Appl. Phys. Lett. 87, 221101 (2005).

    Google Scholar 

  14. 14.

    T. Yatsui, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion”, Appl. Phys. Lett. 79, 4583–4585 (2001).

    Article  ADS  Google Scholar 

  15. 15.

    P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures”, Phys. Rev. B61, 10484–10503 (2000).

    ADS  Google Scholar 

  16. 16.

    R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width”, Opt. Lett. 52, 844–846 (2000).

    ADS  Google Scholar 

  17. 17.

    P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures”, Phys. Rev. B63, 125417 (2001).

    Google Scholar 

  18. 18.

    R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons”, Opt. Express 13, 977–984 (2005).

    Article  ADS  Google Scholar 

  19. 19.

    P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon polariton waveguides”, J. Appl. Phys. 98, 043109 (2005).

    Google Scholar 

  20. 20.

    A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons”, J. Lightwave Technol. 23, 413–422 (2005).

    Article  Google Scholar 

  21. 21.

    K. Leosson, T. Nikolajsen, A. Boltasseva, and S.I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications”, Opt. Express 14, 314–319 (2006).

    Article  ADS  Google Scholar 

  22. 22.

    M.L. Brongersma, J.W. Hartman, and H.A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit”, Phys. Rev. B62, R16356–R16359 (2000).

    ADS  Google Scholar 

  23. 23.

    S.A. Maier, “Guiding of electromagnetic energy in subwavelength periodic metal structures,” PhD Thesis, California Institute of Technology, Pasadena, 2003.

    Google Scholar 

  24. 24.

    S.A. Maier, P.G. Kik, and H.A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides”, Phys. Rev. B67, 205402 (2003).

    Google Scholar 

  25. 25.

    S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing”, Appl. Phys. Lett. 86, 071103 (2005).

    Google Scholar 

  26. 26.

    A. Degiron and D.R. Smith, “Numerical simulations of long-range plasmons”, Opt. Express 14, 1611–1625 (2006).

    Article  ADS  Google Scholar 

  27. 27.

    W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice”, Opt. Express 13, 4818–4827 (2005).

    Article  ADS  Google Scholar 

  28. 28.

    W.M. Saj, T.J. Antosiewicz, J. Pniewski, and T. Szoplik, “Plasmon waveguides on silver nanoelements”, Proc. SPIE 6195, 227–237 (2006).

    Google Scholar 

  29. 29.

    L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration”, Opt. Express 13, 6645–6650 (2005).

    Article  ADS  Google Scholar 

  30. 30.

    R. Zia, M.D. Selker, P.B. Catrysse, and M.L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes”, J. Opt. Soc. Amer. A21, 2442–2446 (2004).

    Article  ADS  Google Scholar 

  31. 31.

    J.A. Dionne, L.A. Sweatlock, H.A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization”, Phys. Rev. B73, 035407 (2006).

    Google Scholar 

  32. 32.

    A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, 2000.

    Google Scholar 

  33. 33.

    P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972).

    ADS  Google Scholar 

  34. 34.

    D. Gerace and L. Andreani, “Low-loss guided modes in photonic crystal waveguides”, Opt. Express 13, 4939–4951 (2005).

    Article  ADS  Google Scholar 

Download references

Author information



About this article

Cite this article

Saj, W.M., Antosiewicz, T.J., Pniewski, J. et al. Energy transport in plasmon waveguides on chains of metal nanoplates. Opto-Electron. Rev. 14, 243–251 (2006).

Download citation


  • surface plasmons-polaritons
  • waveguides
  • nano-optical devices
  • plasmon resonance
  • evanescent waves