Skip to main content
Log in

Molecular characterization using SSR markers and biochemical analysis of Moroccan and Spanish argan [Argania spinosa (L.) Skeels] ecotypes under water stress and rewatering

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

An integrated molecular and biochemical approach was carried out to compare Moroccan and Spanish argan [Argania spinosa (L.) Skeels] ecotypes. Genetic diversity of seedlings was evaluated using Simple Sequence Repeat (SSR) markers. In addition, water stress was imposed by holding water and enzymatic peroxidase (POX), superoxide dismutase (SOD), catalase (CAT) activities and total proteins in well-watered and water-deficient conditions were evaluated. The molecular characterization of the two ecotypes showed that the number of presumed alleles revealed by the SSR analysis ranged from 1 to 32 alleles per locus, with a mean value of 13 alleles and a mean heterozygosity value of 0.44. The assayed SSRs showed that most individuals were clustered according to their ecotype with a similar diversity level between Moroccan and Spanish ecotypes. Enzymatic activities in response to drought stress showed increase in POX and SOD activities for both ecotypes together with total protein content, but showed no significant differences in CAT activity. A potential tolerance to drought stress with increased levels of SOD activity in Spanish ecotypes grown in inland area of Alicante compared with Moroccan ecotypes grown in Essaouira, which is a coastal area, was also reported. In addition, the recovery period seemed to be sensed by argan plants as a new stress situation, as observed by the response of POX and CAT activities, suggesting an imbalance in the H2O2 metabolism. Our results suggestd an effect of geographic proximity and population isolation and/or breeding system on molecular phenotypes and responses to drought stress of the studied argan ecotypes. However, further investigations are needed to verify the induced differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABR:

Argan biosphere reserve

APX:

Ascorbates Peroxidade

CAT:

catalase

CEBAS-CSIC:

Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas

N:

nitrogen

P:

phosphorus

PD:

power of discrimination

POX:

peroxidase

ROS:

Reactive Oxygen Species

SOD:

superoxide dismutase

SSR:

Simple sequence repeat

UNESCO:

United Nations Educational, Scientific and Cultural Organization

UPGMA:

unweighted pair group method with arithmetic mean

References

  • Acosta-Motos JR, Díaz-Vivancos P, Álvarez S, Fernández-García N, Sánchez-Blanco MJ, Hernández JA (2015) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242:829–846. https://doi.org/10.1007/s00425-015-2315-3

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  • Ait Aabd N, Msanda F, El Mousadik A (2014) Evaluation of variability in argan oil content through different environments and preselection of elite genotypes. Euphytica 195:157–167. https://doi.org/10.1007/s10681-013-0969-0

    Article  CAS  Google Scholar 

  • Alimohammadi A, Shiran B, Martínez-Gómez P, Ebrahimie E (2013) Identification of water-deficit resistance genes in wild almond Prunus scoparia using cDNA-AFLP. Sci Hort 159:19–28. https://doi.org/10.1016/j.scienta.2013.04.023

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Ann Rev Plant Mol Biol 50:601–639. https://doi.org/10.1146/annurev.arplant.50.1.601

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloro- plasts and their functions. Plant Physiol 141:391–396. https://doi.org/10.1104/pp.106.082040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bani-Aameur F (2004) Morphological diversity of argan (Argania spinosa (L.) Skeels) populations in Morocco. For Genet 11(3):311–316

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Ann Bioch 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Chakhchar A, Wahbi S, Lamaoui M, Ferradous A, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2015a) Physiological and biochemical traits of drought tolerance in Argania spinosa. J Plant Interact 10:252–261. https://doi.org/10.1080/17429145.2015.1068386

  • Chakhchar A, Lamaoui M, Wahbi S, El Mousadik A, Ibnsouda Koraichi S, Filali-Maltouf A, El Modafar C (2015b) Differential drought tolerance of four contrasting argania spinosa ecotypes assessed by enzymatic and non-enzymatic antioxidants. Int J Recent Sci Res 6(3):3002–3009

    Google Scholar 

  • Chakhchar A, Lamaoui M, Wahbi S, Ferradous A, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2015c) Leaf water status, osmoregulation and secondary metabolism as a model for depicting drought tolerance in Argania spinosa. Acta Physiol Plant 37:80. https://doi.org/10.1007/s11738-015-1833-8

    Article  CAS  Google Scholar 

  • Chakhchar A, Lamaoui M, Aissam S, Ferradous A, Wahbi S, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, Modafar CE (2016) Differential physiological and antioxidative responses to drought stress and recovery among four contrasting Argania spinosa ecotypes. J Plant Interact 11:30–40. https://doi.org/10.1080/17429145.2016.1148204

    Article  CAS  Google Scholar 

  • Chakhchar A, Chaguer N, Ferradous A, Filali-Maltouf A, El Modafar C (2018) Root system response in Argania spinosa plants under drought stress and recovery. Plant Signal Behav 13:7, e1489669. https://doi.org/10.1080/15592324.2018.1489669

    Article  CAS  PubMed  Google Scholar 

  • Defaa C, Achour A, Hossayni A, Bellefontaine R, El Moussadik A, Msanda F (2013) Analyse de l’itinéraire technique d’un périmètre réussi de régénération d’arganier. Actes du Premier Congrès International de l’Arganier, pp 15–17

  • Del Rio LA, Corpas FJ, Lopez-Huertas E, Palma JM (2018) Plant superoxide dismutases: function under abiotic stress conditions. In: Gupta D, Palma J, Corpas F (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham. https://doi.org/10.1007/978-3-319-75088-0_1

  • Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernandez JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. J Exp Bot 11:976–985. https://doi.org/10.1111/pbi.12090

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1989) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytoch Bull 19:11–15

    Google Scholar 

  • El Bahloul Y, Dauchot N, Machtoun I, Gaboun F, Van Cutsem P (2014) Development and characterization of microsatellite loci for the Moroccan endemic endangered species Argania spinosa (Sapotaceae). Appl Plant Sci 2:11–22. https://doi.org/10.3732/apps.1300071

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. https://doi.org/10.1007/BF00221895

  • El Mrabet S, Ouahmane L, El Mousadik A, Msanda F, Abbas Y (2013) L’efficacité de l’inoculation mycorhyzienne et de l’addition du bio-compost sur le développement d’Argania spinosa sur le champ. Actes du 2ème Congrès Internationales de l’Arganier, pp 25–26

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought. J Exp Bot 62:2599–2613. https://doi.org/10.1093/jxb/erq432

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689. https://doi.org/10.1007/s00018-014-1767-0

    Article  CAS  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Review paper: factors influencing levels of genetic diversity in woody plant species. In: Adams WT, Strauss SH, Copes DL, Griffin AR (eds) Population genetics of forest trees. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2815-5_7

  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea plants. Physiol Plant 115:251–257. https://doi.org/10.1034/j.1399-3054.2002.1150211.x

    Article  PubMed  Google Scholar 

  • Hernandez JA, Rubio M, Olmos E, Ros-Barcelo A, Martínez-Gómez P (2004) Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica L. cv GF305). Physiol Plant 122:486–495. https://doi.org/10.1111/j.1399-3054.2004.00431.x

  • Hernández JA, Escobar C, Creissen G, Mullineaux P (2004b) Role of hydrogen peroxide and the redox state of ascorbate in the induction of antioxidant enzymes in pea leaves under excess light stress. Funct Plant Biol 31:359–368. https://doi.org/10.1071/FP03246

    Article  PubMed  Google Scholar 

  • Khayi S, Azza NE, Gaboun F et al (2020) First draft genome assembly of the Argane tree (Argania spinosa) [version 2; peer review: 2 approved]. F1000Res 7:1310. https://doi.org/10.12688/f1000research.15719.2

  • Kloosterman AD, Budowle B, Daselaar P (1993) PCR- amplification and detection of the human DIS80 VNTR Locus. Amplification conditions and application in forensic analysis. Integr J Legal Medec 105:257–264. https://doi.org/10.1007/BF01370382

    Article  CAS  Google Scholar 

  • Lamaoui M, Aissam S, Wahbi S, Chakhchar A, Ferradous A, El Moousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2015) Anti-oxidant activity in Argania spinosa callus selected under water stress conditions. J Hort Sci Biotech 90:127–134. https://doi.org/10.1080/14620316.2015.11513163

  • Le Polain de Waroux Y, Lambin EF (2012) Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Morocco). Appl Geogr 32:777–786. https://doi.org/10.1016/j.apgeog.2011.08.005

    Article  Google Scholar 

  • Majourhat K, Jabbar Y, Araneda L, Zeinalabedini M, Hafidi A, Martínez-Gómez P (2007a) Karyotype character- ization of Argania spinosa (L.) Skeel (Sapotaceae). S Afr J Bot 73:661–663. https://doi.org/10.1016/j.sajb.2007.06.007

  • Majourhat K, Hafidi A, Piqueras A, Martínez-Gómez P (2007b) Micropropagación de la especie oleaginosa argania procedente de Marruecos. Actas Hortic 48:647–649

  • Majourhat K, Jabbar Y, Hafidi A, Martínez-Gómez P (2008) Molecular characterization and genetic relationships among most common identified morphotypes of critically endangered rare Moroccan species Argania spinosa (Sapotaceae) using RAPD and SSR markers. Ann Forest Sci 65:805–810. https://doi.org/10.1051/forest:2008069

  • Martínez-Gómez P, Hafidi A, Piqueras A, Majourhat K (2010) Application of biotechnology tools in the conservation and characterization of critically endangered ancient Moroccan species Argania spinosa (Sapotaceae). In: Horticulture in the 21st Century. A. N. Sampson. Editorial Nova Science Publishers, Inc., Hauppauge (EE. UU.), pp 121–142

  • Martínez-Gómez P, Correa D, Sánchez–Blanco MJ, Majourhat K, Rubio M, Martínez-García PJ (2018) Posibilidades del cultivo del argán [Argania spinosa (L.) Skeels] en el Sureste español. Fruticultura 66:21–28

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    Article  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405. https://doi.org/10.1111/j.1365-313X.1994.00397.x

    Article  CAS  PubMed  Google Scholar 

  • Mouhaddab J, Filali Alaoui I, Zahidi A, El Mousadik A (2016) Etude du mode de reproduction et de dissemination du pollen chez l’arganier (Argania Spinosa (L) Skeels). Am J Innov Res Appl Sci 2:257–264

  • Mouhaddab J, Msanda F, Filali-Maltouf A, Belkadi B, Ferradouss A, ElModafar C, Ibnsouda Koraichi S, El Mousadik A (2017) Using microsatellite markers to map genetic diversity and population structure of an endangered Moroccan endemic tree (Argania spinosa L. Skeels) and development of a core collection. Plant Gene 10:51–59. https://doi.org/10.1016/j.plgene.2017.05.008

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction. Proc Nat Acad Sci USA 76:5269–5273. https://doi.org/10.1073/pnas.76.10.5269

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279. https://doi.org/10.1146/annurev.arplant.49.1.249

    Article  CAS  Google Scholar 

  • Novo Uzal E, Gómez Ros LV, Pomar F, Bernal MA, Paradela A, Albar JP, Ros Barceló A (2009) The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. Physiol Plant 135:196–213. https://doi.org/10.1111/j.1399-3054.2008.01185.x

    Article  CAS  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection – An overview of recent progress. Environ Exp Bot 71:89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021

    Article  Google Scholar 

  • Ramírez F, Escalante M, Vigliocco A, Pérez-Chaca MR, Molina A, Di Rienzo JA, Andrade A, Alemano S (2020) Biochemical and molecular approach of oxidative damage triggered by water stress and rewatering in sunflower seedlings of two inbred lines with different ability to tolerate water stress. Funct Plant Biol. https://doi.org/10.1071/FP19264

    Article  PubMed  Google Scholar 

  • Ros-Barcelo A, Gomez-Ros LV, Ferrer MA, Hernandez JA (2006) The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees 20:145–156. https://doi.org/10.1007/s00468-005-0020-8

  • Sayfzadeh S, Habibi D, Taleghani DF, Kashani A, Vazan S, Qaen SHS, Khodaei AH, Boojar MMA, Rashidi M (2011) Response of antioxidant enzyme activities and root yield in sugar beet to drought stress. Int J Agric Biol 13:357–362

    CAS  Google Scholar 

  • Sbay H, Lamhamedi MS (2015) Multiplication végétative: outil pour l’amélioration, la valorisation et la conservation des ressources génétiques de l’arganier (Argania spinosa (L.) Skeels) face aux changements climatiques. Actes du 3ème Congrès International de l’Arganier, pp 54–59

  • Selote DS, Khanna-Chopra R (2006) Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol Plant 127:494–506. https://doi.org/10.1111/j.1399-3054.2006.00678.x

    Article  CAS  Google Scholar 

  • Vanková R, Dobrá J, Storchová H (2012) Recovery from drought stress in tobacco: an active process associated with the reversal of senescence in some plant parts and the sacrifice of others. Plant Signal Behav 7:19–21. https://doi.org/10.4161/psb.7.1.18375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatrib C, Belkadi B, Medraoui L, Pakhrou O, Alami M, Filali-Maltouf A (2017) Genetic diversity and population structure of the endangered argan tree (Argania spinosa L. Skeels) in morocco as revealed by SSR markers: Implication for conservation. AJCS 11:1304–1314. https://doi.org/10.21475/ajcs.17.11.10.pne602

Download references

Acknowledgements

This study has been supported by projects: “Selection and characterization of drought resistant almond cultivars from the Mediterranean basin with high nutraceutical values” (Nut4Drought) from ARIMNET-2 European Program and “Breeding stone fruit species assisted by molecular tools” from the Seneca Foundation of the Region of Murcia (19879/GERM/15).

Funding

This study has been supported by projects: “Selection and characterization of drought resistant almond cultivars from the Mediterranean basin with high nutraceutical values” (Nut4Drought) from ARIMNET-2 European Program and “Breeding stone fruit species assisted by molecular tools” from the Seneca Foundation of the Region of Murcia (19879/GERM/15).

Author information

Authors and Affiliations

Authors

Contributions

Maintenance of germplasm collections and experimental assys: PM-G, AL, SB and PJM-G. Performed SSR analysis: SB, PJM-G and SJ. Biochemical analysis: SB and JAH. Analysed and discussed the data: SB, AL, KM, JAH, PJM-G and PM-G.

Corresponding author

Correspondence to Pedro Martínez-Gómez.

Ethics declarations

All financial, commercial or other relationships that might be perceived by the academic community as representing a potential conflict of interest must be disclosed. If no such relationship exists, authors will be asked to confirm the following statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Conflict of interest

The authors have declared that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bnikkou, S., Laknifli, A., Majourhat, K. et al. Molecular characterization using SSR markers and biochemical analysis of Moroccan and Spanish argan [Argania spinosa (L.) Skeels] ecotypes under water stress and rewatering. Biologia 76, 799–808 (2021). https://doi.org/10.2478/s11756-020-00626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-020-00626-4

Keywords

Navigation