Abstract
Type II diabetes is a metabolic disorder characterized by hyperglycemia arising from defective insulin signaling. Several synthetic drugs are being used for diabetes treatment, but they have adverse effects. So as an alternative approach, compounds from plants with lesser/no side effects and comparatively cheaper are gaining momentum. Terpenes comprise a class of diversified phytochemicals, which have beneficial effects and important functions in plants. They have shown a series of biological properties that healthpromoting conduct in humans. Besides, a lot of terpenes have also been reported to be much less toxic as compared to synthetic compounds. Diabetic people could be benefited from terpenes obtained either from the diet or from plant-derived herbal medicines. Due to the natural origin of terpenes, they are supposed to be a safe and promising agent in eliminating the causes and effects of diabetes. This paper reviews the research reports of terpenes as their antidiabetic potential, mechanistic action, preclinical profile, shortcomings, and prospect in the effective management of diabetes.
Similar content being viewed by others
Abbreviations
- ACC:
-
Acetyl-CoA carboxylase
- ACE:
-
Angiotensin converting enzyme
- AGEs:
-
Advanced glycation end products
- AMPK:
-
AMP activated protein kinase
- AR:
-
Aldose reductase
- DAA:
-
Dehyroabietic acid
- DM:
-
Diabetes mellitus
- DPP IV:
-
Dipeptidyl peptidase IV
- DPPH:
-
2,2-diphenyl-1-picryhydrazyl
- ER:
-
Endoplasmic reticulum
- GADA:
-
Glutamic Acid Decarboxylose
- GLP:
-
Glucagon like peptide
- GSP:
-
Glycosylated serum protein
- HbA1c:
-
Haemoglobin A1c
- IA2A:
-
Insulinoma associated autoantigen 2
- IDDM:
-
Insulindependent diabetes mellitus
- IR:
-
Insulin receptor
- IRE1:
-
Inositol requiring enzyme 1
- IRS:
-
Insulin receptor substrate
- LC-MS:
-
liquid chromatography-mass spectrometry
- MAPK:
-
Mitogen-activated protein kinase
- MDA:
-
Malondialdehyde
- NF-kB:
-
Nuclear factor kappa-B
- NIDDM:
-
Noninsulindependent diabetes mellitus
- NLC:
-
Nano-structured lipid carriers
- NLRP3:
-
Nod like receptor family pyrin domain containing 3
- Nrf2:
-
Nuclear factor erythroid 2-related factor
- OGTT:
-
Oral glucose tolerance test
- PL:
-
Pancreatic lipase
- PPAR:
-
Peroxisome proliferator activator receptor
- PTP:
-
Protein tyrosine phosphatase
- ROS:
-
Reactive oxygen species
- SIRT1:
-
Silent mating type information regulation 2 homolog 1 overexpression
- SLN:
-
Solid lipid nanoparticles
- SOD:
-
Superoxide dismutase
- STZ :
-
Streptozotocin
- STZ-NA:
-
Streptozotocin-Nicotinamide
- TG :
-
Triglyceride
- TNF α:
-
Tumor necrosis factor-α
- TTA:
-
Total triterpene acid
References
Abudula R, Jeppesen PB, Rolfsen SE, Xiao J, Hermansen K (2004) Rebaudioside A potently stimulates insulin secretion from isolated mouse islets: Studies on the dose, glucose, and calcium dependency. Metabol 53:1378–1381. https://doi.org/10.1016/j.metabol.2004.04.014
Ahangarpour A, Shabani R, Farbood Y (2018) The effect of betulinic acid on leptin, adiponectin, hepatic enzyme levels and lipid profiles in streptozotocin–nicotinamide-induced diabetic mice. Res Pharm Sci 13:142–148. https://doi.org/10.4103/1735-5362.223796
AlarconAguilara FJ, RomanRamos R, PerezGutierrez S, AguilarContreras A, Contreras Weber CC, FloresSaenz JL (1998) Study of the antihyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol 61:101110. https://doi.org/10.1016/s0378-8741(98)00020-8
Analco JAG, Martineau L, Saleem A, Madiraju P, Muhammad A, Durst T, Haddad P, Arnason JT (2010) Bioassayguided isolation of the antidiabetic principle from Sorbusdecora (Rosaceae) used traditionally by the EeyouIstchee Cree First Nations. J Nat Prod 73:151923. https://doi.org/10.1021/np1003005
Arvindekar AU, More TA, Kulkarni1 BR, Nalawade1 ML (2014) Antidiabetic activity of linalool and limonene in streptozotocin- induced Diabetic rat: a combinatorial therapy approach. IJPPS 6:159–163
Asase A, Yohonu DT (2016) Ethnobotanical study of herbal medicines for management of diabetes mellitus in Dangme West District of southern Ghana. J Herb Med 6:163–210. https://doi.org/10.1016/j.hermed.2016.07.002
Ayachi H, Merad M, Ghalem S (2013) Study of interaction between dipeptidyl peptidase-4 and products extracted from the stevia plant by molecular modeling. Int J Pharm Sci Rev Res 23:87–90
Azadmehr A, Ziaee A, Ghanei L et al (2014) A Randomized Clinical Trial Study: Anti-Oxidant, Anti-hyperglycemic and Anti-Hyperlipidemic Effects of Olibanum Gum in Type 2 Diabetic Patients. Iran J Pharm Res 13:1003–1009
Baltina LA, Flekhter OB, Nigmatullina LR, Boreko EI, Pavlova NI, Nikolaeva SN, Savinova OV, Tolstikov GA (2003) Lupane triterpenes and derivatives with antiviral activity. Bioorg Med Chem Lett 13:3549–3552. https://doi.org/10.1016/s0960-894×(03)00714-5
Bharti SK, Krishnan S, Kumar A, Gupta AK, Ghosh AK, Kumar A (2015) Mechanism based antidiabetic activity of fructo and isomalto oligosaccharides: Validation by in vivo, in silico and in vitro interaction potential. Process Biochem 50:317 – 27. https://doi.org/10.1016/j.procbio.2014.10.014
Bharti SK, Krishnan S, Kumar A, Kumar A (2018) Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Ther Adv Endocrinol Metab 9:81–100. https://doi.org/10.1177/2042018818755019
Birgani GA, Ahangarpour A, Khorsandi L, Moghaddam HF (2018) Anti-diabetic effect of betulinic acid on streptozotocin nicotinamide induced diabetic male mouse model. Braz J Pharm Sci 54:e17171. https://doi.org/10.1590/s2175-97902018000217171
Bonito MC, Cicala C, Marcotullio MC, Maione F, Mascolo N (2011) Biological activity of bicyclic and tricyclic diterpenoids from Salvia species of immediate pharmacological and pharmaceutical interest. Nat Prod Commun 6:1205–1215
Bury M, Girault A, Me´galizzi V, Spiegl-Kreinecker S, Mathieu V, Berger W, Evidente A, Kornienko A, Gailly P, Vandier C, Kiss R (2013) Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death Dis 4:e561. https://doi.org/10.1038/cddis.2013.85
Bustanji Y, AlMasri IM, Mohammad M, Hudai M, Tawah K, Tarazi H, AlKhati HS (2011) Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba. J Enzyme Inhib Med Chem 26:453–459. https://doi.org/10.3109/14756366.2010.525509
Butler MS (2008) Natural products to drugs: natural productderived compounds in clinical trials. Nat Prod Rep 25:475–516. https://doi.org/10.1039/b514294f
Castro AJG, Frederico MJS, Cazarolli LH, Mendes CP, Bretanha LC, Schmidt EC, Bouzon ZL, Pinto VAM, Ramos CF, Pizzolatti MG, Silva FRMB (2015) The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochm Biophy Acta 1850:51–61. https://doi.org/10.1016/j.bbagen.2014.10.001
Chamnan P, Simmons RK, Forouhi NG, Luben RN, Khaw KT, Wareham NJ, Griffin SJ (2011) Incidence of type 2 diabetes using proposed HbA1c diagnostic criteria in the European prospective investigation of cancer-norfolk cohort: Implications for preventive strategies. Diabetes Care 34:950–956. https://doi.org/10.2337/dc09-2326
Chang CI, Chou CH, Liao MH, Chen TM, Cheng CH, Anggriani R, Tsai CP, Tseng HI, Cheng HL (2015) Bitter melon triterpenes work as insulin sensitizers and insulin substitutes in insulin resistant cells. J Funct Foods 13:214–224. https://doi.org/10.1016/j.jff.2014.12.050
Charoenputtakun P, Pamornpathomkul B, Opanasopit P, Rojanarata T, Ngawhirunpat T (2014) Terpene composited lipid nanoparticles for enhanced dermal delivery of all-trans-retinoic acids. Biol Pharm Bull 37:1139–1148. https://doi.org/10.1248/bpb.b14-00015
Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus present and future perspectives. Nat Rev Endocrinol 8:228–236. https://doi.org/10.1038/nrendo.2011.183
Chen J, Hou XF, Wang G, Zhong QX, Liu Y, Qiu HH et al (2016a) Terpene glycoside component from Moutan Cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses. J Ethnopharmacol 193:433–444. https://doi.org/10.1016/j.jep.2016.09.043
Chen XW, Liu WT, Wang YX, Chen WJ, Li HY, Chen YH et al (2016b) Cyclopropanyldehydrocostunolide LJ attenuates high glucose-induced podocyte injury by suppressing RANKL/RANK-mediated NF-kappaB and MAPK signaling pathways. J Diabetic Complicat 30:760–769. https://doi.org/10.1016/j.jdiacomp.2016.03.013
Chen L, Lu X, El-Seedi H, Teng H (2019) Recent advances in the development of sesquiterpenoids in the treatment of type 2 diabetes. Trends in Food Sc Technol 88:46–56. https://doi.org/10.1016/j.tifs.2019.02.003
Cimmino A, Andolfi A, Evidente A (2014) Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants. Nat Prod Commun 9:401–408
Colagiuri R (2010) Diabetes: a pandemic, a development issue or both? Expert Rev Cardiovasc Ther 8:30509. https://doi.org/10.1586/erc.10.12
Concannon P, Rich SS, Nepom GT (2009) Genetics of type 1A diabetes. N Engl J Med 360:1646–1654. https://doi.org/10.1210/rp.56.1.69
Deutschlander MS, Lall N, Van de Venter M, Hussein AA (2011) Hypoglycaemic evaluation of a new triterpene and other compounds isolated from Eucleaundulata Thunb. var. myrtina (Ebenaceae) root bark. J Ethnopharmacol 133:1091–1095. https://doi.org/10.1016/j.jep.2010.11.038
Donath MY, Ehses JA (2006) Type 1, type 1.5, and type 2 diabetes: NOD the diabetes we thought it was. Proc Natl Acad Sci USA 103:12217–12218. https://doi.org/10.1073/pnas.0605480103
Eliza J, Daisya P, Ignacimuthu S, Duraipandiyan V (2009) Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats. Chemico-Biol Interact 179:329–334. https://doi.org/10.1016/j.cbi.2008.10.017
Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31:617–627. https://doi.org/10.1039/c3np70078j
Evidente A, Kornienko A, Lefranc F, Cimminoa A, Dasari R, Evidente M, Mathieu V, Kiss R (2015) Sesterterpenoids with Anticancer Activity. Curr Med Chem 22:3502–3522. https://doi.org/10.2174/0929867322666150821101047
Falodun A, Chaudhry AMA, Choudhary IM (2009) Phytotoxic and chemical investigations of a nigerian medicinal plant. Res J Phytochem 3:13–17. https://doi.org/10.3923/rjphyto.2009.13.17
Farias RA, Rao VS, Viana GS, Silveira ER, Maciel MA, Pinto AC (1997) Hypoglycemic effect of transdehydrocrotonin, a norclerodane diterpene from Croton cajucara. Planta Med 63:558560. https://doi.org/10.1055/s-2006-957766
Felizola SJA (2015) Urosolic acid in experimental models and human subjects: Potential as an antiobesity/overweight treatment? Cancer. 2. https://doi.org/10.13140/RG.2.1.4502.4804
Fuente JA, Manzanaro S (2003) Aldose reductase inhibitors from natural sources. Nat Prod Rep 20:243251. https://doi.org/10.1039/b204709h
Gaikwad SB, Mohan GK, Rani MS (2014) Phytochemicals for diabetes management. J Occupational Accidents 5:11–28
Gardana C, Simonetti P, Canzi E, Zanchi R, Pietta P (2003) Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J Agric Food Chem 51:6618–6622. https://doi.org/10.1021/jf0303619
Geng Y, Lu ZM, Huang W et al (2013) Bioassay-Guided Isolation of DPP-4 inhibitory fractions from extracts of submerged cultured of Inonotus obliquus. Molecules 18:1150–1161. https://doi.org/10.3390/molecules18011150
Ghorbani A (2013) Best herbs for managing diabetes: A review of clinical studies. Braz J Pharm Sci 49:413–422. https://doi.org/10.1590/S1984-82502013000300003
Ghorbani A (2014) Clinical and experimental studies on polyherbal formulations for diabetes: current status and future prospective. J Integr Med 12:336–345. https://doi.org/10.1016/S2095-4964(14)60031-5
Gong Y, Chen K, Yu SQ, Liu HR, Qi MY (2012) Protective effect of terpenes from Fructus corni on the cardiomyopathy in alloxan induced diabetic mice. Chin J Appl Physiol 28:37880
GonzálezBurgos E, GómezSerranillos MP (2012) Terpene Compounds in Nature: A Review of their Potential Antioxidant Activity. Curr Med Chem 19:53195341. https://doi.org/10.2174/092986712803833335
Goto T, Takahashi N, Hirai S, Kawada T (2010) Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Res 2010:483958. https://doi.org/10.1155/2010/483958
Goto T, Takahashi N, Kato S et al (2012) Bixin Activates PPARα and Improves Obesity-Induced Abnormalities of Carbohydrate and Lipid Metabolism in Mice. J Agr Chem 60:11952–11958. https://doi.org/10.1021/jf303639f
Guasch L, Sala E, Mulero M et al (2013) Identification of PPAR gamma partial agonists of natural Origin (II): In Silico prediction in natural extracts with known antidiabetic activity. PLoS One 8:1–12. https://doi.org/10.1371/journal.pone.0055889
Güdr A (2016) Influence of total anthocyanins from bitter melon (momordica charantia linn.) as antidiabetic and radical scavenging agents. Iran J Pharm Res 15:301–309
Ha DT, Tuan DT, Thu NB, Nhiem NX, Ngoc TM, Yim N, Bae K (2009) Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa, Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin resistant human HepG2 Cells. Bioorg Med Chem Lett 19:5556–5559. https://doi.org/10.1016/j.bmcl.2009.08.048
Halberstein RA (2005) Medicinal plants: historical and crosscultural usage patterns. Ann Epidemiol 15:686–699. https://doi.org/10.1016/j.annepidem.2005.02.004
Hou C, Lin SJ, Cheng JT, Hsu FL (2003) Antidiabetic dimeric guianolides and a lignan glycoside from Lactuca indica. J Nat Prod 66:6259. https://doi.org/10.1021/np0205349
Hou W, Li Y, Zhang Q, Wei X, Peng A, Chen L, Wei Y (2009) Triterpene acids isolated from Lagerstroemia speciosa leaves as α-glucosidase inhibitors. Phytother Res 23:614–618. https://doi.org/10.1002/ptr.2661
Huang J, Guo Z, Cheng P, Sun B, Gao H (2012) Three new triterpenoids from Salacia hainanensis Chun How showed effective antiαglucosidase activity. Phytochem Lett 5:432–437. https://doi.org/10.1016/j.phytol.2012.03.016
Huseini HF, HasaniRnjbar S, Nayebi N, Heshmat R, Sigaroodi FK, Ahvazi M, Alaei BA, Kianbakht S (2013) Capparis spinosa L. (Caper) fruit extract in treatment of type 2 diabetic patients: A randomized doubleblind placebocontrolled clinical trial. Complement Ther Med 21:447–452. https://doi.org/10.1016/j.ctim.2013.07.003
Inman WD, Luo J, Jolad SD, King SR, Cooper R (1999) Antihyperglycemic sesquiterpenes from Psacalium decompositum. J Nat Prod 62:108892. https://doi.org/10.1021/np990023v
Jelenković L, Jovanović VS, Palić I et al (2014) In vitro screening of α-amylase inhibition by selected terpenes from essential oils. Trop J Pharma Res 13:1421–1428. https://doi.org/10.4314/tjpr.v13i9.7
Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K (2000) Stevioside acts directly on pancreatic β cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate sensitive K+ channel activity. Metabol 49:208–214. https://doi.org/10.1016/s0026-0495(00)91325-8
Jeppesen PB, Gregersen S, Alstrup KK, Hermansen K (2002) Stevioside induces antihyperglycemic, insulinotropic and glucagonostatic effects in vivo: Studies in the diabetic GotoKakizaki (GK) rats. Phytomed 9:9–14. https://doi.org/10.1078/0944-7113-00081
Jeppesen PB, Gregersen S, Rolfsen SE, Jepsen M, Colombo M, Agger A et al (2003) Antihyperglycemic and blood pressure reducing effects of stevioside in the diabetic Goto Kakizaki rat. Metabol 52:372378. https://doi.org/10.1053/meta.2003.50058
JieQiong M, ChanMin L, ZhiHong Q, JiHong J, YunZhi S (2011) Ganoderma applanatum terpenes protect mouse liver against benzo(a)pyreninduced oxidative stress and inflammation. Environ Toxicol Pharmacol 31:460–468. https://doi.org/10.1016/j.etap.2011.02.007
Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YMA, Passwater R (2003) Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa leaves in Type II diabetics. A dose dependence study. J Ethanopharm 87:115–117. https://doi.org/10.1016/s0378-8741(03)00122-3
Kako M, Miura T, Nishiyama Y, Ichimaru M, Moriyasu M, Kato A (1997) Hypoglycemic activity of some triterpenoid glycosides. J Nat Prod 60:604605. https://doi.org/10.1021/np9605403
Kang M, Hirai S, Goto T, Kuroyanagi K et al (2009) Dehydroabietic acid, a diterpene, improves diabetes and hyperlipidemia in obese diabetic KK-Ay mice. Biofactors 35:442–448. https://doi.org/10.1002/biof.58
Khan V, Najmi AK, Akhtar M, Aqil M, Mujeeb M, Pillai KK (2012) A pharmacological appraisal of medicinal plants with antidiabetic potential. J Pharmacy Bioall Sci 4:27–42. https://doi.org/10.4103/0975-7406.92727
Kim S, Na M, Oh H et al (2006) PTP1B inhibitory activity of kaurane diterpenes isolated from Siegesbeckia glabrescens. J Enzyme Inhib Med Chem 21:379–383. https://doi.org/10.1080/14756360600741560
Kishi, Morikawa T, Matsuda H, Yoshikawa M (2003) Structures of new friedelane and norfriedelane type triterpenes and polyacylatedeudesmanetype sesquiterpene from Salacia chinensis Linn. (S. prinoides DC., Hippocrateaceae) and radical scavenging activities of principal constituents. Chem Pharm Bull 51:10515. https://doi.org/10.1248/cpb.51.1051
Kohlert C, van Rensen I, Marz R, Schindler G, Graefe EU, Veit M (2000) Bioavailability and Pharmacokinetics of natural volatile terpenes in animals and humans. Planta Med 66:495–505. https://doi.org/10.1055/s-2000-8616
Kumar MP, Poornima, Mamidala E et al (2020) Effects of D-Limonene on aldose reductase and protein glycation in diabetic rats. J King Saud Univ. https://doi.org/10.1016/j.jksus.2020.01.043
Kumar D, Ghosh R, Pal BC (2013) α-Glucosidase inhibitory terpenoids from Potentilla fulgens and their quantitative estimation by validated HPLC method. J Funct Foods 5:1135–1141. https://doi.org/10.1016/j.jff.2013.03.010
Kwon JH, Chang MJ, Seo HW et al (2008) Triterpenoids and a sterol from the stem-bark of Styrax japonica and their protein tyrosine phosphatase 1B inhibitory activities. Phytother Res 22:1303–1306. https://doi.org/10.1016/j.phytochem.2006.12.015
Lailerd N, Saengsirisuwan V, Sloniger JA, Toskulkao C, Henriksen EJ (2004) Effects of stevioside on glucose transport activity in insulin sensitive and insulin resistant rat skeletal muscle. Metabol 53:101–107. https://doi.org/10.1016/j.metabol.2003.07.014
Laszczyk MN (2009) Pentacyclic triterpenes of the lupane,oleanane and ursane group as tools in cancer therapy. Planta Med 75:1549–1560. https://doi.org/10.1055/s-0029-1186102
Liang LF, Gao LX, Li J et al (2013) Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors. Bioorg Med Chem 21:5076–5080. https://doi.org/10.1016/j.bmc.2013.06.043
Liu AH, Bao YM, Wang XY, Zhang ZX (2013) Cardio-protection by Ginkgo biloba extract 50 in rats with acute myocardial infarction is related to Na+-Ca2+ exchanger. A J Chin Med 41:789–800. https://doi.org/10.1016/j.bmc.2013.06.043
Liu H, Wang J, Wang P, Xue Y (2015) Paeoniflorin attenuates Aβ1-42-induced inflammation and chemotaxis of microglia in vitro and inhibits NF-κB- and VEGF/Flt-1 signaling pathways. Brain Res 1618:149–158. https://doi.org/10.1016/j.brainres.2015.05.035
Liu WY, Tzeng TF, Liu IM (2016) Zerumbone, a bioactive sesquiterpene, Ameliorates diabetes-induced retinal microvascular damage through inhibition of Phospho-p38 mitogen-activated protein kinase and nuclear factor-κB pathways. Molecules 21:708. https://doi.org/10.3390/molecules21121708
Lü H, Chena J, Li WL, Rena BR, Wu JL, Kang HY, Zhang HQ, Adams A, De Kimpe N (2009) Hypoglycemic and hypolipidemic effects of the total triterpene acid fraction from Folium Eriobotryae. J Ethnopharmacol 122:486–491. https://doi.org/10.1016/j.jep.2009.01.030
Ma T, Xu L, Lu L, Cao X, Li X et al (2019) Ursolic Acid Treatment Alleviates Diabetic Kidney Injury By Regulating The ARAP1/AT1R Signaling Pathway. Metab Syndr Obe 12:2597–2608. https://doi.org/10.2147/DMSO.S222323
Majouli K, Hlila MB, Hamdi A, Flamini G, Jannet HB, Kenani A (2016) Antioxidant activity and α glucosidase inhibition by essential oils from Hertia cheirifolia (L.). Ind Crops Prod 82:23–28. https://doi.org/10.1016/j.indcrop.2015.12.015
Malviya N, Jain S, Malviya S (2010) Antidiabetic potential of medicinal plants. Acta Pol Pharm 67:113118
Matsuda H, Morikawa T, Ueda H, Yoshikawa M (2001) Medicinal foodstuffs. XXVI. Inhibitors of aldose reductase and new triterpene and its oligoglycoside, centella sapogenol A and centella saponin A, from Centella asiatica (Gotu Kola). Heterocycles 55:1499–1504. https://doi.org/10.1248/cpb.49.1368
Mbaze LM, Poumale HM, Wansi JD, Lado JA, Khan SN, Iqbal MC, Ngadjui BT, Laatsch H (2007) Alphaglucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochem 68:591–595. https://doi.org/10.1016/j.phytochem.2006.12.015
Mishra A, Gautami S, Pal S et al (2015) Effect of Momordica charantia fruits on streptozotocin-induced diabetes mellitus and its associated complications. IJPPS 7:356–363
Mnafgui K, Kaanich F, Derbali A et al (2013) Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats. Arch Physiol Biochem 1–9. https://doi.org/10.3109/13813455.2013.822521
Morikawa T, Kishi A, Ponpiriyadacha Y, Matsuda H, Yoshikawa M (2003) Structures of friedelane type triterpenes and Eudesmane type sesquiterpene and aldose reductase inhibitors from Salacia chinese. J Nat Prod 66:11916. https://doi.org/10.1021/np0301543
Moses T, Pollier J, Thevelein JM, Goossens A (2013) Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol 200:27–43. https://doi.org/10.1111/nph.12325
Motaal AA, Ezzata SM, Haddadb PS (2011) Determination of bioactive markers in Cleome droserifolia using cellbased bioassays for antidiabetic activity and isolation of two novel active compounds. Phytomed 19:38–41. https://doi.org/10.1016/j.phymed.2011.07.003
Murali R, Saravanan R (2012) Antidiabetic effect of Dlimonene, a monoterpene on streptozotocin induced diabetic rats. Biomed Prev Nutr 2:269275. https://doi.org/10.1016/j.bionut.2012.08.008
Murali R, Karthikeyan A, Saravanan R (2013) Protective Effects of D-Limonene on Lipid Peroxidation and Antioxidant Enzymes in Streptozotocin Induced Diabetic Rats. Basic Clin Pharmacol Toxicol 112:175–181. https://doi.org/10.1111/bcpt.12010
Na M, Oh WK, Kim YH et al (2006) Inhibition of protein tyrosine phosphatase 1B by diterpenoids isolated from Acanthopanax koreanum. Bioorg Med Chem Lett 16:3061–3064. https://doi.org/10.1016/j.bmcl.2006.02.053
Naik SR, Barbosa Filho JM, Dhuley JN, Deshmukh V (1991) Probable mechanism of hypoglycemic activity of bassic acid, a natural product isolated from Bumelia sartorum. J Ethnopharmacol 33:3744. https://doi.org/10.1016/0378-8741(91)90158-a
Nangle MR, Gibson TM, Cotter MA, Cameron NE (2006) Effects of Eugenol on nerve and vascular dysfunction in streptozotocin Diabetic rats. Planta Med 72:494–500. https://doi.org/10.1055/s-2005-916262
Naseri R, Bakhtiari F, Jalili C, Bakhtiari N (2019) Ursolic acid increases SIRT1 protein level and β-cells number in diabetic rats. Physiol Pharmacol 23:21–27
Nazaruk J, Borzym-Kluczyk M (2015) The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev 14:675–690. https://doi.org/10.1007/s11101-014-9369-x
Noor A, Gunasekaran S, Manickam AS, Vijayalakshmi MA (2008) Antidiabetic activity of Aloe vera and histology of organs in streptozotocin induced diabetic rats. Current Sci 94:1070 1076
Paduch R, Kandefer – Szerszeń M, Trytek M, Fiedurek J (2007) Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp 55:315–327
Panigrahy SK, Bhatt R, Kumar A (2016) Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. J Drug Target 25:93–101. https://doi.org/10.1080/1061186X.2016.1207650
Panigrahy SK, Kumar A, Bhatt R (2017) Antioxidant potentials of successive solvent extracts from the unexplored Hedhychium coronarium rhizome. J Food Sci Technol 54:3297. https://doi.org/10.1007/s13197-017-2777-3
Panigrahy SK, Kumar A, Bhatt R (2018) Hedychium coronarium rhizomes: promising anti- diabetic and natural inhibitor of α-amylase and α-glucosidase. J Dietary Suppl 16:1–8. https://doi.org/10.1080/19390211.2018.1483462
Panigrahy SK, Kumar A, Bhatt R (2019) In vitro and in vivo antidiabetic activity of fractions obtained from the unexplored Hedychium coronarium rhizome. Proc Natl Acad Sci Biol Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-019-01125-6
Panigrahy SK, Jha A, Bhatt R, Kumar A (2020) Molecular docking and ADMET–based mining of terpenoids against targets of type–II diabetes. Network Modeling Analysis in Health Informatics Bioinformatics 9:21. https://doi.org/10.1007/s13721-020-00229-8
Prabhakar PK, Doble M (2011) Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med 17:563574. https://doi.org/10.1007/s11655-011-0810-3
Prasad S, Kalra N, Shukla Y (2007) Hepatoprotective effects of lupeol and mango pulp extract of carcinogen induced alteration in Swiss albino mice. Mol Nutr Food Res 51:352–359. https://doi.org/10.1002/mnfr.200600113
Purnomo Y, Soeatmadji DW, Sumitro SB, Widodo MA (2015) Anti-diabetic potential of Urena lobata leaf extract through inhibition of dipeptidyl peptidase IV activity. Asian Pac J Trop Biomed 5:645–649. https://doi.org/10.1002/mnfr.200600113
Ramachandran S, Prasad NR (2008) Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes. Chem Biol Interact 176:99–107. https://doi.org/10.1016/j.cbi.2008.08.010
Raut NA, Gaikwad NJ (2006) Antidiabetic activity of hydro-ethanolic extract of Cyperus rotundus in alloxan induced diabetes in rats. Fitoterapia 77:585–588. https://doi.org/10.1016/j.fitote.2006.09.006
Samarghandian S, Borji A, Delkhosh MB, Samini F (2013) Safranal Treatment Improves Hyperglycemia, Hyperlipidemia and Oxidative Stress in Streptozotocin Induced Diabetic Rats. J Pharm Sci 16:352–362. https://doi.org/10.18433/j3zs3q
Serra-Barcellona C, Coll Araoz MV, Cabrera WM, Habib NC, Honore SM et al (2014) Smallanthus macroscyphus: A new source of antidiabetic compounds. Chemico-Biol Interactions 209:35–47. https://doi.org/10.1016/j.cbi.2013.11.015
Shi Q, Wang J, Cheng Y, Dong X, Zhang M, Pei C (2019) Palbinone alleviates diabetic retinopathy in STZ-induced rats by inhibiting NLRP3 inflammatory activity. Biochem Mol Toxicol 2019:e22489. https://doi.org/10.1002/jbt.22489
Singh AK (2014) Dipeptidyl peptidase-4 inhibitors: novel mechanism of actions. Indian J Endocrinol Metab 18:753–759. https://doi.org/10.4103/2230-8210.141319
Tahira S, Hussain F (2014) Antidiabetic evaluation of Momordica charantia L fruit extracts. West Indian Med J 63:294–299. https://doi.org/10.7727/wimj.2013.180
Takahashi N, Goto T, Taimatsu A et al (2009) Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARγ activation. Biochem Biophy Res Comm 390:1372–1376. https://doi.org/10.1016/j.bbrc.2009.10.162
Tan MJ, Ye JM, Turner N et al (2008) Antidiabetic Activities of Triterpenoids Isolated from Bitter Melon Associated with Activation of the AMPK Pathway. Chem Biol 15:263–273. https://doi.org/10.1016/j.chembiol.2008.01.013
Tang J, Li J, Qi W, Qiu W, Li P, Li B, Song B (2011) Inhibition of SREBP by a small molecule, Betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metabol 13:44–56. https://doi.org/10.1016/j.cmet.2010.12.004
Teng H, Yuan B, Gothai S, Arulselvan P, Song X, Chen L (2018) Dietary triterpenes in the treatment of type 2 diabetes: To date. Trends Food Sc Technol 72:34–44. https://doi.org/10.1016/j.tifs.2017.11.012
Tiwari AK, Rao JM (2002) Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Current Sc 83:30–38
Tu Z, Moss-Pierce T, Ford P, Jiang TA (2013) Rosemary (Rosmarinus officinalis L.) extract regulates glucose and lipid metabolism by activating AMPK and PPAR pathways in HepG2 cells. J Agric Food Chem 61:2803. https://doi.org/10.1021/jf400298c
Wang ZH, Hsu CC, Huang CN, Yin MC (2010) Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur J Pharmacol 628:255–260. https://doi.org/10.1016/j.ejphar.2009.11.019
Wang H, Kan W, Cheng T, Yu S et al (2014) Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food Chem Toxicol 69:347–356. https://doi.org/10.1016/j.fct.2014.04.008
Wu WB, Zhang H, Dong SH et al (2014) New triterpenoids with protein tyrosine phosphatase 1B inhibition from Cedrela odorata. J Asian Nat Prod Res 1–8. https://doi.org/10.1080/10286020.2014.919281
Xiang M, Wang J, Zhang Y, Ling J, Xu X (2012) Attenuation of aortic injury by ursolic acid through RAGE-Nox-NFjB pathway in streptozocin-induced diabetic rats. Arch Pharm Res 35:877–886. https://doi.org/10.1007/s12272-012-0513-0
Xu Q, Wang L, Luo J, Shi D (2018) The hot and potential targets of type 2 diabetes mellitus treatment in recent decade. Curr Drug Targets 19:55–69. https://doi.org/10.2174/1389450118666170307111714
Yin MC, Lin MC, Mong MC, Lin CY (2012) Bioavailability, distribution, and antioxidative effects of selected triterpenes in mice. J Agric Food Chem 60:7697–7701. https://doi.org/10.1021/jf302529x
Zhang BB, Moller DE (2000) New approaches in the treatment of type 2 diabetes. Current opinion Chem Bio 4:461–467. https://doi.org/10.1016/s1367-5931(00)00103-4
Zhang S, Zhang ZY (2005) PTP 1B as a drug target: recent developments in PTP1B inhibitor. Drug Discov Today 2:129–135. https://doi.org/10.1016/j.drudis.2007.03.011
Zheng JL, Lu L, Hu J, Zhang RY, Zhang Q, Chen QJ et al (2010) Increased serum YKL-40 and C-reactive protein levels are associated with angiographic lesion progression in patients with coronary artery disease. Atherosclerosis 210:590–595. https://doi.org/10.1016/j.atherosclerosis.2009.12.016
Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32:468–478. https://doi.org/10.1016/j.immuni.2010.03.018
Acknowledgements
The authors are thankful to the GGU, Bilaspur (India), and NIT, Raipur (India) for support and facility. Financial assistance to SKP as SRF for Ph.D. from University Grants Commission (UGC), New Delhi, India is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
None.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Panigrahy, S.K., Bhatt, R. & Kumar, A. Targeting type II diabetes with plant terpenes: the new and promising antidiabetic therapeutics. Biologia 76, 241–254 (2021). https://doi.org/10.2478/s11756-020-00575-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11756-020-00575-y