Evaluating the amount of potential greenhouse gas emissions from forest fires in the area of the Slovak Paradise National Park


Presented paper deals with the quantification of greenhouse gas emissions from forest fires. The investigation was based on the inventory methodology of the Intergovernmental Panel on Climate Change from the year 2006. We describe the proposal of our methodology for estimating the required biomass for modelling (using the available literature as well as Sibyla growth simulator), and subsequently we describe the modelling process with fuel models (using FCCS model) as well as the resulting greenhouse gas emissions (using FARSITE and CONSUME model) for the selected site called Krompľa – Tri Kopce in the Slovak Paradise National Park in the cadastral area of Hrabušice, in which fire destroyed an area of 80 ha in the year 2000. From the forest typology point of view, following groups of forest types are dominant at the site: Fagetum dealpinum (Limestone beech forests); Fageto-Abietum (Neutrophilous beech forests), Pinetum dealpinum (Carpathian relict calcicolous Scots pine forests), Fagetum typicum (Limestone beech forests), Fageto-Aceretum (Mixed ravine and slope forests). The results indicate that the conceptions differ in the quantification of biomass available for burning, which was underestimated in the case of TIER 1 conception in comparison to TIER 2 and TIER 3, and also in the quantification of emissions. The emissions produced during the flameless burning phase were underestimated, while the CO2 emissions were slightly overestimated when comparing TIER 2 and TIER 3 approaches. The final assessment of the whole process points out at the problematic issues in the calculations of GHG emissions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Aragao L, Shimabukuro YE (2010) The incidence of fire in Amazonian forests with implications for REDD. Sci. 4:1275–1278. https://doi.org/10.1126/science.1186925

    CAS  Article  Google Scholar 

  2. Arino O, Casadio S, Serpe D (2012) Global night-time fire season timing and fire count trends using the ATSR instrument series, Remote Sens. Environ. 116:226–238. https://doi.org/10.1016/j.rse.2011.05.025

    Article  Google Scholar 

  3. Barilla J. (2008) Discussion about fire forces fighting with Krompľa forest fire. Personal communication with chief colonel Ján Barilla

  4. Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011) The human dimension of fire regimes on earth. J Biogeogr 38:2223–2236. https://doi.org/10.1111/j.1365-2699.2011.02595.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dozier JA (1981) Method for satellite identification of surface-temperature fields of subpixel resolution. Remote Sens Environ 11:221–229. https://doi.org/10.1016/0034-4257(81)90021-3

    Article  Google Scholar 

  6. Fabrika M (2012) Simulator of forest biodynamics SIBYLA 2012. Available online: http://etools.tuzvo.sk/sibyla/english/ (Accessed on 1 Marec 2019)

  7. Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J Forest Sci 5:431–445. https://doi.org/10.17221/4577-JFS

    Article  Google Scholar 

  8. Giglio L, Kendall JD, Tucker CJ (2000) Remote sensing of fires with the TRMM VIRS. Int J Remote Sens 21(1):203–207. https://doi.org/10.1080/014311600211109

    Article  Google Scholar 

  9. Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282. https://doi.org/10.1016/S0034-4257(03)00184-6

    Article  Google Scholar 

  10. Glasa J, Weisenpacher P, Halada L (2008) Analysis of forest fire behaviour by computer simulation (in Slovak). Proceedings of the Scientific Work of the Mining University - Technical University of Ostrava. A number of security engineering

  11. Hančinský L (1972) Forest types of Slovakia. Príroda, Bratislava, 307 pp. (In Slovak)

  12. Holécy J, Tuček J, Škvarenina J, Minďáš J (2008) An evaluation of the soil erosion hazard induced by forest fores. Mateorol J Meteorologický časopis 11:53–56

    Google Scholar 

  13. Huna L, Kozak M, Voloscuk, I (1985) Slovak paradise – protected landscape area. Bratislava, Priroda, 381 pp. (In Slovak)

  14. IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme [Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds).]. Published: Institute for Global Environmental Strategies (IGES), Hayama, Japan.

  15. IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/CBO9781107415416

  16. Landry JS, Matthews HD (2016) Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses. Biogeosci. 13:2137–2149. https://doi.org/10.5194/bg-13-2137-2016

    CAS  Article  Google Scholar 

  17. Le Quere C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P. Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Klein Goldewijk K, Koven C, Landschutzer P, Lauvset, SK, Lefevre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel JEMS, Nakaoka S, Nojiri Y, O'Brien K, Olsen A, Ono T, Perez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Rodenbeck C, Saito S, Schuster U, Schwinger J, Seferian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, and Zeng N (2015) Global Carbon Budget 2015. Earth System Science Data, 7 (2). pp. 349-396. ISSN 1866-3516

  18. Leskovianska A (1999) Present State of Vegetation in the Slovak Paradise National Park and its Protection. In: Proceedings of the 7 th Meeting of the Slovak Botanical Society, Hrabusice – Podlesok, 21. – 25. 6. 1999, Slovak Paradise National Park administration, Spisska Nova Ves, pp 100–103 (In Slovak)

  19. Lin HW, Jin WY, Giglio L, Foley JA, Randerson JT (2012) Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires. Ecol Appl 22:1345–1364. https://doi.org/10.1890/10-2362.1

    Article  PubMed  Google Scholar 

  20. Lin HW, McCarty JL, Wang D, Rogers BM, Morton DC, Collatz GJ, Jin Y, Randerson JT (2014) Management and climate contributions to satellite-derived active fire trends in the contiguous United States. J Geophys Res Biogeosci 119:645–660. https://doi.org/10.1002/2013JG002382

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matson M, Dozier J (1981) Identification of subresolution hightemperature sources using a thermal IR sensor. Photogramm Eng Remote Sens 47:1311–1318

    Google Scholar 

  22. Mello J. (2000) Geological map of the Slovensky Raj, Galmus Mts. and Hornad Depression, Bratislava: State Geological Institute of Dionyz Stur, 303 pp.

  23. Ottmar RD, Sandberg DV, Riccardi CL, Prichard SJ (2007) An overview of the fuel characteristic classification system – quantifying, classifying, and creating fuelbeds for resource planning. Can J For Res 37:2383–2393. https://doi.org/10.1139/X07-077

    Article  Google Scholar 

  24. Randerson JT, Chen Y, Werf GR, Rogers BM, Morton DC (2012) Global burned area and biomass burning emissions from small fires. J Geophys Res 117. https://doi.org/10.1029/2012JG002128

  25. Roberts G, Wooster MJ, Lagoudakis E (2009) Annual and diurnal african biomass burning temporal dynamics. Biogeo. 6:849–866. https://doi.org/10.5194/bg-6-849-2009

    Article  Google Scholar 

  26. Šaly R (1984) Soils of the state nature reservation of Kysel. Ochrana Prirody 5:67–83 (In Slovak)

    Google Scholar 

  27. Šály R (1985) Soil conditions. In: Huňa, et al. Slovak Paradise. Nature, Bratislava, p. 59–68. (In Slovak)

    Google Scholar 

  28. Škvarenina J, Minďáš J, Holécy J, Tuček J (2003) Analysis of the natural and meteorological conditions during two largest forest fire events in the Slovak Paradise National Park. In Proceedings of the International Scientific Workshop on Forest Fires in the Wildland–Urban Interface and Rural Areas in Europe: an integral planning and management challenge, Athens, Greece, 15–16 May 2003; Ed. G Xanthopoulos, Mediterranean Agronomic Institute of Chania: Chania, Greece, 29–36

  29. Škvarenina J, Križová E, Tomlain J (2004) Impact of the climate change on the water balance of altitudinal vegetation stages in Slovakia. Ekologia-Bratislava. 23:13–29 (In Slovak)

    Google Scholar 

  30. Škvarenina J, Tomlain J, Hrvol J, Škvareninová J, Nejedlık P (2009) Progress in dryness and wetness parameters in altitudinal vegetation stages of West Carpathians: time-series analysis 1951–2007. Idojárás 113:47–54

    Google Scholar 

  31. Škvarenina J, Holécy J, Hríbik M, Vida T (2012) Fire weather indices as the measures of a progressive climate change in the territory Slovensky raj. In V Symposio nacional sobre incendios forestales: trabajos presentados

  32. Slovak Republic Annual Report (2019) (SVK AR 2019). Submission according to the article 7 of the regulation (EU) no. 525/2013/EU and relevanz articles of the Regulation (EU) No 749/2014 Slovak Hydrometeorological Institute, Ministry of Environment of the Slovak Republic Bratislava, January 15, 2019. Available at: https://ghg-inventory.shmu.sk/documents.php. Accessed Feb 2020

  33. Stanová V, Valachovič M (2002) Catalog of Slovak biotops. DAPHNE – Inštitút aplikovanej ekológie/ Institute of applied ecology, Bratislava 225 pp. (In Slovak)

    Google Scholar 

  34. van der Werf, G., Randerson, J., Giglio, L., van Leeuwen, T., Chen, Y., Rogers, B., et al. (2017). Global fire emissions estimates during 1997-2016. Earth system science data, 9(2), 697-720. https://doi.org/10.5194/essd-9-697-2017

  35. Vida T, Škvarenina J (2010) Influence of weather on beech litter moisture in selected forest stands of Javorníky Mts. And Slovenský raj National Park. In: Bioklima 2010 international conference, Prague, Czech Republic, 7−9. September 2010. Kožnarová, V.; Sulovská, S. Eds., 486−495. (In Slovak) Available at: http://www.cbks.cz/bioklima2010/Bioklima2010.pdf. Accessed Feb 2020

  36. Vido J, Tadesse T, Šustek Z, Kandrík R, Hanzelová M, Škvarenina J, Škvareninova J, Hayes M (2015) Drought occurrence in central European mountainous region (Tatra National Park, Slovakia) within the period 1961–2010. Adv Meteorol Article Num 248728. https://doi.org/10.1155/2015/248728

  37. Vido J, Střelcova K, Nalevankova P, Leštianska A, Kandrik R, Pastorová A, Skvarenina J, Tadesse T (2016) Identifying the relationships of climate and physiological responses of a beech forest using the standardised precipitation index: a case study for Slovakia. J Hydrol Hydromech 64:246–251. https://doi.org/10.1515/johh-2016-0019

    Article  Google Scholar 

  38. Xu W, Wooster MJ, Roberts G, Freeborn P (2010) New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across north, South and Central America. Remote Sens Environ 114:1876–1895. https://doi.org/10.1016/j.rse.2010.03.012

    Article  Google Scholar 

  39. Zhang XY, Kondragunta S (2008) Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product. Remote Sens Environ 112:2886–2897. https://doi.org/10.1016/j.rse.2008.02.006

    Article  Google Scholar 

Download references


This work was accomplished as a part of VEGA projects No.: 1/0500/19 and 1/0370/18 of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Science; and the projects of the Slovak Research and Development Agency No.: APVV-15-0425, APVV-15-0497 and APVV-18-0347. The authors thank the agencies for the support.

Author information



Corresponding author

Correspondence to Katarína Korísteková.

Ethics declarations

Conflict of interest

Author Jaroslav Škvarenina has received research grants from Science Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic VEGA No. 1/0500/19 and from Slovak Research and Development Agency with No. APVV-15-0425, APVV-150497 and APVV-18-0347. Author Jaroslav Vido has received research grant from Science Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic VEGA No. 1/0370/18. The authors declare that they have no other conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korísteková, K., Vido, J., Vida, T. et al. Evaluating the amount of potential greenhouse gas emissions from forest fires in the area of the Slovak Paradise National Park. Biologia 75, 885–898 (2020). https://doi.org/10.2478/s11756-020-00461-7

Download citation


  • FCCS model
  • Forest fires
  • Greenhouse gas emissions
  • IPCC methodology