Skip to main content
Log in

Environmental variables do not explain the high size fluctuations in Rhinolophus euryale pre-hibernating aggregation

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The Mediterranean horseshoe bat, Rhinolophus euryale, creates in the pre-hibernation period an aggregation in the Domica cave (Slovakia) and despite the harsh winter conditions displays a certain amount of flying activity. The goal of the study was to find out whether some environmental factors influence these conspicuous aggregation dynamics. We used image and statistical analysis of pictures of the aggregation taken automatically in the cave along with atmospheric pressure, humidity, outside and inside cave temperature and oxygen and carbon dioxide contents in the cave. These environmental variables were assumed to explain the observed activity. We hypothesised that the number of bats in particular time periods would correlate with some of these variables, but this was not confirmed. The only significant relations confirmed were those between bat numbers and humidity and carbon dioxide values in the cave. No trend in the spatial positioning of the bats was observed, and no environmental factors influenced the numbers, movements or groupings of bats. On the contrary, bats by their presence (breathing), activity and production of excrements may significantly influence the microclimate of the cave environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews MM, Hodnett AM, Andrews PT (2017) Social activity of lesser horseshoe bats (Rhinolophus hipposideros) at nursery roosts and a hibernaculum in North Wales, UK. Acta Chiropterol 19:161–174. https://doi.org/10.3161/15081109ACC2017.19.1.013

    Article  Google Scholar 

  • Avery MI (1985) Winter activity of pipistrelle bats. J Anim Ecol 54:721–738 https://www.jstor.org/stable/4374

  • Baudunette R, Wells R, Sanderson K, Clark B (1994) Microclimatic conditions in maternity caves of the bent-wing bat, Miniopterus schreibersii: an attempted restoration of a former maternity site. Wildl Res 21:607–619. https://doi.org/10.1071/WR9940607

    Article  Google Scholar 

  • Blažek J, Zukal J, Bandouchova H, Berková H, Kovacova V, Martínková N, Pikula J, Řehák Z, Škrabánek P, Bartonička T (2019) Numerous cold arousals and rare arousal cascades as a hibernation strategy in European Myotis bats. J Therm Biol 82:150–156. https://doi.org/10.1016/j.jtherbio.2019.04.002

    Article  PubMed  Google Scholar 

  • Boldogh S (2006) The bat fauna of the Aggtelek National Park and its surroundings (Hungary). Vespertilio 9–10:33–56

    Google Scholar 

  • Boldogh S (2007): Kereknyergű patkósdenevér Rhinolophus euryale Blasius, 1853. In: Bihari Z, Csorba G, Heltai M (eds) Magyarországi emlőseinek atlasza. Kossuth Kiadó, Budapest, pp 70–71

  • Brigham RM (1987) The significance of winter activity by the big brown bat (Eptesicus fuscus): the influence of energy reserves. Can J Zool 65:1240–1242. https://doi.org/10.1139/z87-192

    Article  Google Scholar 

  • Ceľuch M, Kaňuch P (2005) Winter activity and roosts of the noctule (Nyctalus noctula) in an urban area (Central Slovakia). Lynx ns 36:39–45

  • Cleveland WS, Grosse E, Shyu WM (1992) Local regression models. In: Chambers JM, Hastie TJ (eds) Statistical models in S. Chapman & Hall, New York, pp 309–376

    Google Scholar 

  • Daan S (1972) Activity during natural hibernation in three species of vespertilionid bats. Neth J Zool 23:1–71

    Article  Google Scholar 

  • Dunbar MB, Tomasi TE (2006) Arousal patterns, metabolic rate, and an energy budget of eastern red bats (Lasiurus borealis) in winter. J Mammal 87:1096–1102. https://doi.org/10.1644/05-MAMM-A-254R3.1

    Article  Google Scholar 

  • Ek C, Gewelt M (1985) Carbon dioxide in cave atmospheres. New results in Belgium and comparison with some other countries. Earth Surf Process Landf 10:173–187. https://doi.org/10.1002/esp.3290100209

    Article  Google Scholar 

  • Erkert HG (1982) Ecological aspects of bat activity rhythms. In: Kunz TH (ed) Ecology of bats. Plenum Press, New York, pp 201–242

    Chapter  Google Scholar 

  • Fox J, Weisberg S (2011) An {R} companion to applied regression, Second edition. Sage, Thousand Oaks CA. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

  • Furmankiewicz J (2008) Population size, catchment area, and sex-influenced differences in autumn and spring swarming of the brown long-eared bat (Plecotus auritus). Can J Zool 86:207–216. https://doi.org/10.1139/Z07-134

    Article  Google Scholar 

  • Gaál Ľ, Gruber P (eds)(2014) Jaskynný systém Domica-Baradla. Jaskyňa, ktorá nás spája. Správa Aggtelekského národného parku, Jósvafő

  • Gaisler J (2001) Rhinolophus euryale Blasius, 1853 – Mittelmeerhufeisennase. In: Krapp F (ed) Handbuch der Säugetiere Europas. Band 4: Fledertiere. Teil I: Chiroptera I. Rhinolophidae, Vespertilionidae 1. AULA-Verlag, Wiebelsheim, pp 59–74

  • Gaisler J, Hanák V, Hanzal V, Jarský V (2003) Výsledky kroužkování netopýrů v České republice a na Slovensku, 1948–2000. Vespertilio 7:3–61

    Google Scholar 

  • Glover AM, Altringham JD (2008) Cave selection and use by swarming bat species. Biol Conserv 141:1493–1504. https://doi.org/10.1016/j.biocon.2008.03.012

    Article  Google Scholar 

  • Hope PR, Bohmann K, Gilbert MTP, Zepeda-Mendoza ML, Razgour O, Jones G (2014) Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter. Front Zool 11:39. https://doi.org/10.1186/1742-9994-11-39

    Article  PubMed  PubMed Central  Google Scholar 

  • Hope PR, Jones G (2013) An entrained circadian cycle of peak activity in a population of hibernating bats. J Mammal 94:497–505. https://doi.org/10.1644/12-MAMM-A-095.1

    Article  Google Scholar 

  • Lino A, Fonseca C, Mendes G, Pereira MJR (2015) Roosting behaviour and phenology of the lesser horseshoe bat (Rhinolophus hipposideros) in a breeding colony in Sintra, Portugal. Galemys 27:1–12. https://doi.org/10.7325/Galemys.2015.A1

    Article  Google Scholar 

  • Lyman CP, Willis JC, Malan A, Wang LC (2013) Hibernation and torpor in mammals and birds. Academic Press, New York

    Google Scholar 

  • Maliničová L, Hrehová Ľ, Maxinová E, Uhrin M, Pristaš P (2017) The dynamics of Mediterranean horseshoe bat (Rhinolophus euryale, Chiroptera) gut microflora during hibernation. Acta Chiropterol 19:211–218. https://doi.org/10.3161/15081109ACC2017.19.1.017

    Article  Google Scholar 

  • Maxinová E, Arrizabalaga-Escudero A, Arriolabengoa M, Aloria K, Zaldibar B, Boldogh S, Uhrin M, Goiti U, Aihartza J, Garin I (2017a) Faeces of Rhinolophus euryale (Chiroptera) from the winter season contain inorganic matter. Hystrix It J Mamm 28:98–103. https://doi.org/10.4404/hystrix-28.1-11874

    Article  Google Scholar 

  • Maxinová E, Šustr V, Uhrin M (2017b) Digestive enzymes in Rhinolophus euryale (Rhinolophidae, Chiroptera) are active also during hibernation. Eur J Ecol 3:91–96. https://doi.org/10.1515/eje-2017-0010

    Article  Google Scholar 

  • McGuire LP, Fenton MB, Guglielmo CG (2009) Effect of age on energy storage during prehibernation swarming in little brown bats (Myotis lucifugus). Can J Zool 87:515–519. https://doi.org/10.1139/z09-041

    Article  Google Scholar 

  • Mihál T, Lehotská B (2014) Vplyv premenných prostredia na dynamiku hibernujúcej kolónie Rhinolophus hipposideros v Plaveckej jaskyni (Malé Karpaty). Acta Environ Univ Comen 22:37–46

    Google Scholar 

  • Miková E, Varcholová K, Boldogh S, Uhrin M (2013) Winter diet analysis in Rhinolophus euryale (Chiroptera). Cent Eur J Biol 8:848–853. https://doi.org/10.2478/s11535-013-0199-9

    Article  Google Scholar 

  • Park KJ, Jones G, Ransome RD (1999) Winter activity of a population of greater horseshoe bats (Rhinolophus ferrumequinum). J Zool 248:419–427. https://doi.org/10.1111/j.1469-7998.1999.tb01041.x

    Article  Google Scholar 

  • Park KJ, Jones G, Ransome RD (2000) Torpor, arousal and activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum). Funct Ecol 14:580–588. https://doi.org/10.1046/j.1365-2435.2000.t01-1-00460.x

    Article  Google Scholar 

  • Parsons KN, Jones G, Greenaway F (2003) Swarming activity of temperate zone microchiropteran bats: effects of season, time of night and weather conditions. J Zool 261:257–264. https://doi.org/10.1017/S0952836903004199

    Article  Google Scholar 

  • Paulovics P, Somogyvári O (2007) A kis patkósdenevér (Rhinolophus hipposideros) téli aktivitása: egy hipotézis vitaindítónak. In: Molnár V (ed) Az V. Magyar Denevérvédelmi Konferencia (Pécs, 2005. december 3–4.) és a VI. Magyar Denevérvédelmi Konferencia (Mártély, 2007. október 12–14.) kiadványa. Csemete Természet- és Környezetvédelmi Egyesület, Szeged, pp 18–23

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Ransome RD (1968) The distribution of the greater horse-shoe bat, Rhinolophus ferrum-equinum, during hibernation, in relation to environmental factors. J Zool 154:77–112. https://doi.org/10.1111/j.1469-7998.1968.tb05040.x

    Article  Google Scholar 

  • Ransome RD (1971) The effect of ambient temperature on the arousal frequency of the hibernating greater horseshoe bat, Rhinolophus fermmequinum, in relation to site selection and the hibernation state. J Zool 164:353–371. https://doi.org/10.1111/j.1469-7998.1971.tb01323.x

    Article  Google Scholar 

  • Ransome R (1990) The natural history of hibernating bats [Christopher helm mammal series]. Christopher Helm, London

    Google Scholar 

  • Rivers NM, Butlin RK, Altringham JD (2006) Autumn swarming behaviour of Natterer’s bats in the UK: population size, catchment area and dispersal. Biol Conserv 127:215–226. https://doi.org/10.1016/j.biocon.2005.08.010

    Article  Google Scholar 

  • Rozložník M, Szöllös F, Uhrin M, Karasová E (1994) Slovenský kras. Slovak Karst biosphere reserve. In: Jeník J, Price MF (eds) Biosphere reserves on the crossroads on Central Europe. Czech Republic – Slovak republic. Empora, Praha, pp 114–128

    Google Scholar 

  • Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev 90:891–926. https://doi.org/10.1111/brv.12137

    Article  PubMed  Google Scholar 

  • Sano A (2006) Impact of predation by a cave-dwelling bat, Rhinolophus ferrumequinum, on the diapausing population of a troglophilic moth, Goniocraspidum preyeri. Ecol Res 21:321–324. https://doi.org/10.1007/s11284-005-0122-1

    Article  Google Scholar 

  • van Schaik J, Janssen R, Bosch T, Haarsma A-J, Dekker JJA, Kranstauber B (2015) Bats swarm where they hibernate: compositional similarity between autumn swarming and winter hibernation assemblages at five underground sites. PLoS One 10:e0130850. https://doi.org/10.1371/journal.pone.0130850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DW, Geiser F (1997) Periodic arousals in hibernating mammals: is evaporative water loss involved? Funct Ecol 11:585–591. https://doi.org/10.1046/j.1365-2435.1997.00129.x

    Article  Google Scholar 

  • Uhrin M (1994) Príspevok k hibernácii podkovára južného (Rhinolophus euryale) a večernice malej (Pipistrellus pipistrellus) v Slovenskom krase. Lynx ns 26[1992]:17–20

  • Uhrin M, Bobáková L, Hapl E, Andreas M, Benda P, Obuch J, Reiter A (2002) Zimovanie netopierov v slovenskej časti jaskynného systému Domica-Baradla. Vespertilio 6:237–243

    Google Scholar 

  • Uhrin M, Boldogh S, Bücs S, Paunović M, Miková E, Juhász M, Csősz I, Estók P, Fulín M (2012) Revision of the occurrence of Rhinolophus euryale in the Carpathian region, Central Europe. Vespertilio 16:289–328

  • Uhrin M, Danko Š, Obuch J, Horáček I, Pačenovský S, Pjenčák P, Fulín M (1996) Distributional patterns of bats (Mammalia: Chiroptera) in Slovakia. Part 1, horseshoe bats (Rhinolophidae). Acta Soc Zool Bohem 60:247–279

    Google Scholar 

  • Vachold J (1955) Príspevok k otázke rozšírenia niektorých druhov netopierov (Chiroptera) na Slovensku. Biológia 10:173–178

    Google Scholar 

  • Vachold J (1956) K otázke výskytu a rozšírenia netopierov (Chiroptera) na Slovensku. Biol Práce SAV 2:1–68

    Google Scholar 

  • Whitaker JO Jr, Rissler LJ (1992) Winter activity of bats at a mine entrance in Vermillion County, Indiana. Am Midl Nat 127:52–59 https://www.jstor.org/stable/2426321

  • Whitaker JO Jr, Rissler LJ (1993) Do bats feed in winter? Am Midl Nat 129:200–203 https://www.jstor.org/stable/2426448

  • Williams C, Salter L, Jones G (2011) The winter diet of the lesser horseshoe bat (Rhinolophus hipposideros) in Britain and Ireland. Hystrix It J Mamm 22:159–166. https://doi.org/10.4404/hystrix-22.1-4498

    Article  Google Scholar 

  • Zahn A, Kriner E (2016) Winter foraging activity of central European vespertilionid bats. Mammal Biol 81:40–45. https://doi.org/10.1016/j.mambio.2014.10.005

    Article  Google Scholar 

  • Zukal J, Berková H, Banďouchová H, Kováčová V, Pikula J (2017) Bats and caves: activity and ecology of bats wintering in caves. In: Karabulut S, Cinku MC (eds) Cave investigation. InTech, Rijeka, pp 51–75

    Google Scholar 

  • Zuyev S, White D (2016) Tripack: triangulation of irregularly spaced data. R package version 1.3–8 https://CRAN.R-project.org/package=tripack

Download references

Acknowledgments

We thank the Slovak Cave Administration for their support of surveillance in the Domica cave system. The work on this study was funded by the Slovak Scientific Grant Agency VEGA (grant numbers 2/0077/17, 1/0298/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Uhrin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(GIF 937 kb)

ESM 2

(GIF 957 kb)

ESM 3

(GIF 992 kb)

ESM 4

(GIF 841 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhrin, M., Sabolíková, M., Naďo, L. et al. Environmental variables do not explain the high size fluctuations in Rhinolophus euryale pre-hibernating aggregation. Biologia 75, 1657–1665 (2020). https://doi.org/10.2478/s11756-020-00428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-020-00428-8

Keywords

Navigation