Abstract
Gymnotiformes fishes present a great variation in chromosome numbers. Sternopygidae species are either sex-homomorphic or sex-heteromorphic. This study reports a novel ZZ/ZW chromosome morphology type in Eigenmannia virescens collected from the upper Paraná River basin, which presented karyotype composed of 2n = 38 chromosomes, 6 metacentric (m), 10 submetacentric (sm), 4 subtelocentric (st) and 18 acrocentric (a) for males and 5 m, 11 sm, 4 st and 18 a for females, where the Z is a metacentric chromosome and the W is submetacentric chromosome. A single pair of chromosomes carrying the nucleolar organizing regions (NORs) was detected in the acrocentric chromosome pair No. 15 by silver-staining and confirmed by the 18S rDNA-FISH. Multiple 5S rDNA sites were detected in the karyotype, all of them in pericentromeric regions. The heterochromatin was mainly located in the pericentromeric regions of all chromosomes, and a conspicuous accumulation of heterochromatin colocated in NORs sites. Thus, the variation of Z and W chromosome types, associated with different chromosome sex systems (undifferentiated, XX/XY and ZZ/ZW) and different karyotypic formulae, reinforce that E. virescens should be considered a species complex.
Similar content being viewed by others
References
Albert JS (2003) Family Sternopygidae. In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Checklist of the freshwater fish of south and Central America. Edipuers, Porto Alegre, pp 493–497
Almeida-Toledo LF, Foresti F, Toledo-Filho S (1985) Spontaneous triploidy and NOR activity in Eigenmannia sp. (Pisces, Sternopygidae) from the Amazon basin. Genetica 66:85–88. https://doi.org/10.1007/BF00139713
Almeida-Toledo LF, Stocker AJ, Foresti F, Toledo-Filho SA (1996) Fluorescence in situ hybridization with rDNA probes on chromosomes of two nucleolus organizer region phenotypes of a species of Eigenmannia (Pisces, Gymnotoidei, Sternopygidae). Chromosom Res 4:301–305. https://doi.org/10.1007/BF02263681
Almeida-Toledo LF, Foresti F, Daniel MFZ, Toledo-Filho AS (2000) Sex chromosome evolution in fish: the formation of the neo-Y chromosome in Eigenmannia (Gymnotiformes). Chromosoma 109:197–200. https://doi.org/10.1007/s004120050428
Almeida-Toledo LF, Foresti F, Péquignot EV, Daniel-Silva MF (2001) XX:XY sex chromosome system with X heterochromatinization: an early stage of sex chromosome differentiation in the Neotropic electric eel Eigenmannia virescens. Cytogenet Cell Genet 95:73–78. https://doi.org/10.1159/000057020
Almeida-Toledo LF, Daniel-Silva MFZ, Moysés CB, Fonteles SBA, Lopes CE, Akama A et al (2002) Chromosome evolution in fish: sex chromosome variability in Eigenmannia virescens (Gymnotiformes: Sternopygidae). Cytogenet Genome Res 99:164–169. https://doi.org/10.1159/000071589
Alves-Gomes JA, Guillermo O, Haygood M, Heiligenberg W, Meyer A (1995) Phylogenetic analysis of the south American electric fish (order Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data. Mol Biol Evol 2:298–318. https://doi.org/10.1093/oxfordjournals.molbev.a040204
Araya-Jaime C, Mateussi NTB, Utsunomia R, Costa-Silva GJ, Oliveira C, Foresti F (2017) ZZ/Z0: the new system of sex chromosomes in Eigenmannia aff. trilineata (Teleostei: Gymnotiformes: Sternopygidae) characterized by molecular cytogenetics and DNA barcoding. Zebrafish 14:464–470. https://doi.org/10.1089/zeb.2017.1422
Bellafronte E, Moreira-Filho O, Vicari MR, Artoni RF, Bertollo LAC, Margarido VP (2010) Cytogenetic identification of invasive fish species following connections between hydrographic basins. Hydrobiologia 649:347–354. https://doi.org/10.1007/s10750-010-0277-9
Bertollo LAC, Takahashi CS, Moreira-filho O (1978) Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidade). Braz J Genet 1:103–120
Cioffi MB, Martins C, Bertollo LAC (2010) Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 10:217. https://doi.org/10.1186/1471-2148-10-271
Crampton WGR, Albert JS (2005) Evolution of electric signal diversity in the gymnotiform fish. In: Collin SP, Kpoor BG, Ladich F, Moller P (eds) Fish communication. Science Publisher Inc, New York, pp 647–731
Fernandes CA, Bailly D, Silva VFB, Martins-Santos IC (2010) System of multiple sex chromosomes in Eigenmannia trilineata López & Castello, 1966 (Sternopygidae, Gymnotiformes) from Iguatemi River basin, MS, Brazil. Cytologia 75:463–466. https://doi.org/10.1508/cytologia.75.463
Fernandes CA, Baumgartner L, Paiz LM, Margarido VP, Portela-Castro ALB (2017) Chromosomal characteristics of rDNA in a conserved karyotype of two Sternopygus macrurus (Gymnotiformes: Sternopygidae) populations from upper Paraná River basin. Biologia 72:680–685. https://doi.org/10.1515/biolog-2017-0071
Foresti F, Almeida-Toledo LF, Toledo-Filho SA (1981) Polymorphic nature of nucleolus organizer regions in fishes. Cytogenet Cell Genet 31:137–144. https://doi.org/10.1159/000131639
Fricke R, Eschmeyer WN, Van Der Laan R editores (2019) Catalog of Fishes: Genera, Species, References [Internet]. California Academy of Sciences; 2018 [updated June 01, 2019; cited in June, 20, 2019]. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
Gornung E (2013) Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res 141:90–102. https://doi.org/10.1159/000354832
Griffiths S (2000) The use of clove oil as an anaesthetic and method for sampling intertidal rockpool fishes. J Fish Biol 57:1453–1464. https://doi.org/10.1111/j.1095-8649.2000.tb02224.x
Hatanaka T, Galetti PM Jr (2004) Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1829 (Characiformes, Prochilodontidae). Genetica 122:239–244. https://doi.org/10.1007/s10709-004-2039-y
Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with the protective coloidal developer: a 1-step method. Experientia 36:1014–1015. https://doi.org/10.1007/BF01953855
Kramer B (1999) Mechanisms of signal analysis in Eigenmannia (Gymnotiformes): the jamming avoidance response and communication. In: Val AL, Almeida-Val VMF (eds) Biology of tropical fishes. INPA, Manaus, pp 41–61
Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
Lui RL, Blanco DR, Moreira-Filho O, Margarido VP (2012) Propidium iodide for making heterochromatin more evident in the C-banding technique. Biotech Histochem 87:433–438. https://doi.org/10.3109/10520295.2012.696700
Margarido VP, Moreira-Filho O (2008) Karyotypic differentiation through chromosome fusion and number reduction in Imparfinis hollandi (Ostariophysi, Heptapteridae). Genet Mol Biol 31:235–238. https://doi.org/10.1590/S1415-47572008000200012
Martins C, Galetti PM Jr (1999) Chromosome localization of 5S rDNA genes in Leporinus (Anostomidae, Characiformes). Chromosom Res 7:363–367. https://doi.org/10.1023/A:1009216030316
Merlo MA, Cross I, Manchado M, Cárdenas S, Rebordinos L (2013) The 5S rDNA high dynamism in Diplodus sargus is a transposon-mediated mechanism. Comparison with other multigene families and Sparidae species. J Mol Evol 76:83–97. https://doi.org/10.1007/s00239-013-9541-8
Moysés CB, Mockford S, Almeida-Toledo LF, Wright JM (2005) Nine polymorphic microsatellite loci in the Neotropical electric eel Eigenmannia (Teleostei: Gymnotiformes). Mol Ecol Notes 5:7–9. https://doi.org/10.1111/j.1471-8286.2004.00803.x
Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83:2934–2938. https://doi.org/10.1073/pnas.83.9.2934
Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (2007) Fish Cytogenetics. Science Publishers, Enfield
Sene VF, Pansonato-Alves JC, Utsunomia R, Oliveira C, Foresti F (2014) Karyotype diversity and patterns of chromosomal evolution in Eigenmannia (Teleostei, Gymnotiformes, Sternopygidae). Comp Cytogenet 8:301–311. https://doi.org/10.3897/CompCytogen.v8i4.8396
Sene VF, Pansonato-Alves JC, Ferreira DC, Utsunomia R, Oliveira C, Foresti F (2015) Mapping of the retrotransposable elements Rex1 and Rex3 in chromosomes of Eigenmannia (Teleostei, Gymnotiformes, Sternopygidae). Cytogenet Genome Res 146:319–324. https://doi.org/10.1159/000441465
Silva DS, Milhomem SSR, Pieczarka JC, Nagamachi CY (2009) Cytogenetic studies in Eigenmannia virescens (Sternopygidae, Gymnotiformes) and new inferences on the origin of sex chromosomes in the Eigenmannia genus. BMC Genetics 10(1):74. https://doi.org/10.1186/1471-2156-10-74
Silva M, Barbosa P, Artoni RF, Feldberg E (2016) Evolutionary dynamics of 5S rDNA and recurrent association of transposable elements in electric fish of the family Gymnotidae (Gymnotiformes): the case of Gymnotus mamiraua. Cytogenet Genome Res 149:297–303. https://doi.org/10.1159/000449431
Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Explor Cell Res 75:304–306. https://doi.org/10.1016/0014-4827(72)90558-7
Acknowledgments
The authors thank the Dr. Weferson Júnio da Graça for taxonomic identification of the specimens. Besides, we are grateful to the Ministério do Meio Ambiente/ Instituto Chico Mendes de Conservação da Biodiversidade (MMA/ ICMBio – License number 64619) for authorizing the collection of the biological material.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fernandes, C.A., Curiel, M.H., Paiz, L.M. et al. A novel ZZ/ZW chromosome morphology type in Eigenmannia virescens (Gymnotiformes: Sternopygidae) from upper Paraná River basin. Biologia 75, 1563–1569 (2020). https://doi.org/10.2478/s11756-019-00401-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11756-019-00401-0