Advertisement

Biologia

pp 1–8 | Cite as

Sandwich method applied to the screening of allelopathic action in Byrsonima spp. (Malpighiaceae)

  • Bárbara Christina Silva AmâncioEmail author
  • Kamilla Pacheco Govêa
  • Luciene de Oliveira Ribeiro Trindade
  • Antonio Rodrigues da Cunha Neto
  • Thiago Corrêa de Souza
  • Sandro Barbosa
Original Article
  • 4 Downloads

Abstract

In order to understand the allelochemical action of Byrsonima intermedia A. Juss. and B. verbascifolia Rich. ex A. Juss., the effects on germination, initial growth and cell cycle of Lactuca sativa L., exposed to leaves and fruits of this species, were evaluated using the sandwich method. Data were subjected to analysis of variance and means were compared by the Scott-Knott test (p < 0.05). For the parameters germination percentage and germination rate index, no difference between Byrsonima spp. was observed, and B. intermedia fruits were responsible for the highest inhibition of lettuce germination, compared to the leaves. Root elongation in lettuce exposed to B. verbascifolia organs showed stimulatory effects and B. intermedia organs showed inhibitory effects on root growth. The mitotic index showed the allelopathic effect of Byrsonima spp. by the reduction in cell division in lettuce root meristem, and the stimulus in root elongation was caused by B. verbascifolia, understood as a consequence of cell expansion, not mitotic activity. An aneugenic effect of Byrsonima spp. was observed, and the highest frequency of C-metaphase and stickness was found in B. verbascifolia fruits and B. intermedia leaves.

Keywords

Allelopathy Cytotoxicity Development Growth Phytotoxicity 

Notes

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) for the postdoctoral fellowship PNPD to Dra. Luciene de Oliveira Ribeiro Trindade, National Council for Scientific and Technological Development (CNPq) and Foundation for Research Support of the State of Minas Gerais (FAPEMIG) for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amini S, Azizi M, Joharchi MR, Moradinezhad F (2016) Evaluation of allelopathic activity of 68 medicinal and wild plant species of Iran by Sandwich method. Int J Hort Sci Technol 3(2):245–255Google Scholar
  2. Andrade DAV, Ortolani FA, Moro JR, Moro FV (2008) Aspectos morfológicos de frutos e sementes e caracterização citogenética de Crotalaria lanceolata E. Mey. (Papilionoideae - Fabaceae). Acta Bot Bras 22(3):621–625CrossRefGoogle Scholar
  3. Andrade-Vieira LF, Botelho CM, Laviola BG, Palmieri MJ, Praca-Fontes MM (2014) Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays. An Acad Bras Ciênc 86(1):373–382CrossRefGoogle Scholar
  4. Appiah K, Li Z, Zeng RS, Luo S, Oikawa Y, Fujii Y (2015) Determination of allelopathic potentials in plant species in Sino-Japanese floristic region by sandwich method and dish pack method. Int J Basic Appl Sci 4(4):381–394CrossRefGoogle Scholar
  5. Araújo JA, Azevedo AA, Silva LC, Meira RMS (2010) Leaf anatomy as an additional taxonomy tool for 16 species of Malpighiaceae found in the Cerrado area (Brazil). Plant Syst Evol 286:117–131CrossRefGoogle Scholar
  6. Arroyo AI, Pueyo Y, Giner ML, Foronda A, Sanchez-Navarrete P, Saiz H, Alados CL (2018) Evidence for chemical interference effect of an allelopathic plant on neighboring plant species: a field study. PLoS One 13(2):1–19CrossRefGoogle Scholar
  7. Barbosa EG, Pivello VR, Meirelles ST (2008) Allelopathic evidence in Brachiaria decumbensand its potential to invade the Brazilian Cerrados. Braz Arch Biol Technol 51:625–631CrossRefGoogle Scholar
  8. Borella J, Wandscheer ACD, Bonatti LC, Pastorini L (2012) Efeito alelopático de extratos aquosos de Persea americana Mill. sobre Lactuca sativa L. R bras Bioci 7(3):260–265 http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/1236. Accessed 14 November 2018.
  9. Cândido ACS, Dias ACR, Serra AP, Christoffoleti PJ, Scalon SPQ, Pereira MTL (2010) Potencial alelopático de lixiviados das folhas de plantas invasoras pelo método sanduíche. R Bras Bioci 8(3):268–272 http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/1407. Accessed 23 May 2018.
  10. Carneiro MRB, dos Santos ML (2014) Importância relativa de espécies com potencial uso medicinal na flora do centro oeste do Brasil. Fronteiras. 3(2):145–163CrossRefGoogle Scholar
  11. de Andrade Santiago J, das Graças Cardoso M, da Cruz FA, Palmieri MJ, de Souza RV, Soares LI, JMS d C, Andrade-Vieira LF (2017) Cytogenotoxic effect of essential oil from Backhousia citriodora L.(Myrtaceae) on meristematic cells of Lactuca sativa L. S Afr J Bot 112:515–520CrossRefGoogle Scholar
  12. Einhellig FA (2002) The physiology of allelochemical action: clues and views. In: Reigosa MJ, Pedrol N (eds) Allelopathy, from molecules to ecosystems. Science Publishers, Enfield, New Hampshire, pp 1–23Google Scholar
  13. Ferreira DF (2014) Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciênc Agrotec, Lavras 38(2):109–112CrossRefGoogle Scholar
  14. Ferreira AG, Áquila MEA (2000) Alelopatia: uma área emergente da ecofisiologia. Rev Bras Fisiol Veg 12(1):175–204 https://www.uv.mx/personal/tcarmona/files/2010/08/Gui-y-Alvez-1999.pdf. Accessed 14 November 2018
  15. Figueiredo ME, Michelin DC, Sannomiya M, Silva MA, Dos Santos LC, Almeida LFR et al (2005) Avaliação química e da atividade antidiarreica das folhas de Byrsonima cinera DC. (Malpighiaceae). Rev Bras Cienc Farm 41:79–83 http://www.scielo.br/pdf/%0D/rbcf/v41n1/v41n1a08.pdf. Accessed 23 November 2018
  16. Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas. 102:99–112 CrossRefGoogle Scholar
  17. Fonseca JC, Barbosa MA, Silva ICA, Duarte-Almeida JM, Castro AHF, dos Santos Lima LAR (2017) Antioxidant and allelopathic activities of Smilax brasiliensis Sprengel (Smilacaceae). S Afr J Bot 111:336–340CrossRefGoogle Scholar
  18. Fujii Y, Matsuyama M, Hiradate S, Nakatani K (2000) Developments of new bioassay and analysis method for volatile allelochemicals. Weed Res Jpn 45:80–81  https://doi.org/10.3719/weed.45.Supplement_80. Accessed 23 May 2018CrossRefGoogle Scholar
  19. Fujii Y, Parvez SS, Parvez MM, Ohmae Y, Iida O (2003) Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management 3 (4):233-241CrossRefGoogle Scholar
  20. Gatti AB, Perez SCJG, Lima MIS (2004) Efeito alelopático de Aristolochia esperanzae O. Kunteze na germinação e no crescimento de Lactuca sativa L e Rapanus sativus L. Acta Bot Bras 18(3):459–472CrossRefGoogle Scholar
  21. Gonçalves CA, Siqueira JM, Carollo CA, Mauro MO, Davi N, Cunha-Laura AL et al (2013) Gestational exposureto Byrsonima verbascifolia: teratogenicity, mutagenicity an dimmuno modulation evaluation in female Swiss mice. J Ethnopharmacol 150:843–850CrossRefGoogle Scholar
  22. González-Coloma A, López-Balbosa C, Santana O, Reina M, Fraga BM (2011) Triterpene-based plant defenses. Phytochem Rev 10(2):245–260CrossRefGoogle Scholar
  23. Guilhon-Simplicio F, Pereira MM (2011) Aspectos químicos e farmacológicos de Byrsonima (Malpighiaceae). Quím Nova 34(6):1032–1041 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S010040422011000600021&lng=pt&nrm=iso&tlng=pt. Accessed 25 September 2018
  24. Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81CrossRefGoogle Scholar
  25. Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952CrossRefGoogle Scholar
  26. Luiz C. de A. Rodrigues, Sandro Barbosa, Murilo Pazin, Bianca de S. Maselli, Luiz A. Beijo, Fábio Kummrow, (2013) Fitotoxicidade e citogenotoxicidade da água e sedimento de córrego urbano em bioensaio com Lactuca sativa. Revista Brasileira de Engenharia Agrícola e Ambiental 17 (10):1099-1108Google Scholar
  27. Marchaim U, Werker E, Thomas WDE (1974). Changes in the anatomy of cotton seed coats caused by lucerne saponins. Bot Gaz 135:139–146.  https://doi.org/10.1086/336742 CrossRefGoogle Scholar
  28. Mardani H, Kazantseva E, Onipchenko V, Fujii Y (2016) Evaluation of allelopathic activity of 178 Caucasian plant species. Int J Basic Appl Sci 5(1):75–81CrossRefGoogle Scholar
  29. Mônica Cristina Barroso Martins, Marcio James Gonçalves de Lima, Flávia Pereira Silva, Eulália Azevedo-Ximenes, Nicácio Henrique da Silva, Eugênia Cristina Pereira, (2010) Cladia aggregata (lichen) from Brazilian northeast: chemical characterization and antimicrobial activity. Brazilian Archives of Biology and Technology 53 (1):115-122  https://doi.org/10.1590/S1516-89132010000100015 CrossRefGoogle Scholar
  30. Moreira LQ, Fabiana C. Vilela, Lidiane Orlandi, Danielle F. Dias, Ana Laura A. Santos, Marcelo A. da Silva, Renato Paiva, Geraldo Alves-da-Silva, Alexandre Giusti-Paiva, (2011) Anti-inflammatory effect of extract and fractions from the leaves of Byrsonima intermedia A. Juss. in rats. Journal of Ethnopharmacology 138 (2):610-615CrossRefGoogle Scholar
  31. Moraes RM, dos Santos Filho PR, Carvalho M, de Lima NM, Barbosa S (2015) Effects of copper on physiological and cytological aspects in Lactuca sativa L. R Bras Bioci 13(2)Google Scholar
  32. Novaes P, Molinillo JMG, Varela RM, Macías FA (2013) Ecological phytochemistry of Cerrado (Brazilian savana) plants. Phytochem Rev 12(4):839–855CrossRefGoogle Scholar
  33. Paula C, CantelI V, Silva C, Miguel O, Miguel M (2015) Estudo do potencial fitotóxico de extratos de Bauhinia ungulata L. sobre a divisão celular e atividade enzimática em plântulas de alface. Rev. Bras. Planta Med 17(4):577–584Google Scholar
  34. Peres MTLP, Mapeli AM, Faccenda O, Gomes AT, Honda NK (2009) Allelopathic potential of orsellinic acid derivatives. Braz arch biol Technol. Curitiba. 52(4):1019–1026Google Scholar
  35. Periotto F, Perez SCJGA, Lima MIS (2004) Efeito alelopático de Andira humilis Mart. ex Benth na germinação e no crescimento de Lactuca sativa L. e Raphanus sativus L. Acta Bot Bras 18(3):425–430CrossRefGoogle Scholar
  36. Pinheiro PF, Costa AV, Alves TDA, Galter IN, Pinheiro CA, Pereira AF et al (2015) Phytotoxicity and cytotoxicity of essential oil from leaves of Plectranthus amboinicus, carvacrol, and thymol in plant bioassays. J Agric Food Chem 63(41):8981–8990CrossRefGoogle Scholar
  37. Pinto GFS, Kolb RM (2015) Seasonality affects phytotoxic potential of five native species of neotropical savanna. Botany. 94(2):81–89CrossRefGoogle Scholar
  38. Puig CG, Reigosa MJ, ValentãoP APB, Pedrol N (2018) Unravelling the bioherbicide potential of Eucalyptus globulus Labill: biochemistry and effects of its aqueous extract. PLoS One 13(2)CrossRefGoogle Scholar
  39. Reigosa M, Gomes AS, Ferreira AG, BorghettI F (2013) Allelopathic research in Brazil. Acta Bot Bras 27(4):629–646CrossRefGoogle Scholar
  40. Ribeiro LR, Santos MF, Silva QM, Palmieri MJ, Andrade-Vieira LF, Davide LC (2013) Cytogenotoxic effects of ethanolic extracts of Annona crassiflora (Annonaceae). Bratisl. 68(3):433–438Google Scholar
  41. Rice EL (1984) Allelopathy. Academic Press, New York, p 363 https://scholar.google.com/scholar_lookup?title=Allelopathy&author=EL.%20Rice&publication_year=1984. Accessed 23 May 2018
  42. Rodrigues CM. 2007. Caracterização quali e quantitativa de metabólitos secundários em extratos vegetais. Tese (Doutorado em Química) - Universidade Estadual Paulista “Julio de Mesquita Filho”: AraraquaraGoogle Scholar
  43. Rodrigues LCA, Barbosa S, Pazin M, Maselli BS, Beijo LA, Kummrow F (2013). Fitotoxicidade e citogenotoxicidade da água e sedimento de córrego urbano em bioensaio com Lactuca sativa. Agriambi 17(10):1099–1108.  https://doi.org/10.1590/S1415-43662013001000012 CrossRefGoogle Scholar
  44. Saldanha AA, Lucas Fernandes Do Carmo, João Máximo De Siqueira, Ana Hortência Fonsêca Castro, Natalia Alves De Matos, André Klein, Adriana Cristina Soares, (2013) Análise fitoquímica preliminar e avaliação do possível efeito antiinflamatório da fração enriquecida em flavonóides de Byrsonima verbascifolia (MALPIGHIACEAE). BBR - Biochemistry and Biotechnology Reports 2 (2esp):89CrossRefGoogle Scholar
  45. Saldanha AA, do Carmo LF, do Nascimento SB, de Matos NA, de Carvalho Veloso C, AHF C (2016) Chemical composition and anti-inflammatory activity of the leaves of Byrsonima verbascifolia. J Nat Med 70(4):760–768CrossRefGoogle Scholar
  46. Shinwari MI, Iida OSAMU, Shinwari MI, Fujii Y (2017) Evaluation of phytodiversity for allelopathic activity and application to minimize climate change impact: japanese medicinal plants. Pak J Bot 49:139–144Google Scholar
  47. Silva FM, Áquila MEA (2006) Potencial alelopático de espécies nativas na germinação e crescimento inicial de Lactuca sativa L. (Asteraceae). Acta Bot Bras 20(1):61–69CrossRefGoogle Scholar
  48. Waller GR, Yang CF, Chen LF, Su CH, Liou RM, Wu SC, Young CC, Lee MR, Lee JS, Cheng CS, Chiu CH, Kim D (1999) Saponins produced during the life cycle of mungbeans and their role as allelochemicals. In: Stud Plant Sci 6:105–130  https://doi.org/10.1016/S0928-3420(99)80015-9. Accessed 14 November 2018CrossRefGoogle Scholar
  49. Zeng RS, Mallik AU, Luo SM (2008) Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 189–282Google Scholar

Copyright information

© Plant Science and Biodiversity Centre, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Bárbara Christina Silva Amâncio
    • 1
    Email author
  • Kamilla Pacheco Govêa
    • 2
  • Luciene de Oliveira Ribeiro Trindade
    • 2
  • Antonio Rodrigues da Cunha Neto
    • 1
  • Thiago Corrêa de Souza
    • 2
  • Sandro Barbosa
    • 2
  1. 1.Federal University of LavrasLavrasBrazil
  2. 2.Federal University of AlfenasAlfenasBrazil

Personalised recommendations