Skip to main content

Advertisement

Log in

Effect of magnesite dust pollution on biodiversity and species composition of oak-hornbeam woodlands in the Western Carpathians

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

We aimed to identify how the alkaline dust fallout from magnesite factories (Slovenské rudohorie Mts, Western Carpathians) affects biodiversity and species composition of oak-hornbeam forests, and to compare sensitivity of local biodiversity represented by vascular plants (including flowering plants and ferns) and cryptogams (cyanobacteria, macromycetes, slime molds, lichens, bryophytes). Altogether 24 plots were sampled along four degradation stages during the vegetation seasons 2011–2016: A – poorly developed vegetation on the magnesite crust, B – dense grassland vegetation almost without a tree-layer, C – degraded woodland with opened canopy, and D – visually unaffected original closed-canopy woodland. For each plot we sampled phytocoenological relevés including vascular plants and terrestrial cryptogams (cyanobacteria, lichens and bryophytes), and presence records for epiphytic lichens, epiphytic bryophytes, sporocarps of macromycetes (terrestrial, saprotrophic, parasitic and ectomycorrizal) and sporocarps of slime molds. We also analyzed concentrations of C, Ca, Mg, S, N, P, K in the soil, light conditions, bark pH and the distance from two emission sources (ES). Increased alkaline dust, corresponding to a smaller distance from the emission source correlated with higher concentrations of Mg, Ca, Fe, S, C/N in soil samples. Regressive succession converted oak-hornbeam woodland to degraded woodland with opened canopy, further to ruderal grasslands, then to halophilous procoenoses of Agrostis stolonifera and Puccinellia distans on degraded soils with eroded magnesite crust and biocrusts (formed by cyanobacteria Microcoleus steenstrupii, Nostoc microscopicum and Schizothrix arenaria; bryophytes Desmatodon cernuus, Didymodon tophaceus; pioneer terrestrial lichen Thelidium zwackhii) and finally into habitat with no vegetation. This is the first report on early successional stages with halophilous procoenoses in the Western Carpathians. We also recorded significant differences in species richness and the species pools in all organism groups along the gradient. Overall species diversity decreased. The degradation stages are characterized by low representation of symbiotic macromycetes and by a high proportion of saprotrophic macromycetes. The highest species richness of vascular plants was recorded in degradation stages B and C, the highest herb-layer cover in stage B. The highest species richness of terrestrial bryophytes is also found in dense grassland vegetation in stage B. Occurrence of nitrophilous epiphytic lichens differentiates unaffected oak-hornbeam woodlands from the plots close to the emission source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alwathnani H, Johansen JR (2011) Cyanobacteria in soils from a Mojave Desert ecosystem. Monographs of the Western North American Naturalist 5:71–89

    Google Scholar 

  • Annonymus 2013 Program na zlepšenie kvality ovzdušia v oblasti riadenia kvality ovzdušia – územie mesta Jelšava a obcí Lubeník, Chyžné, Magnezitovce, Mokrá Lúka, Revúcka Lehota. Ministerstvo životného prostredia Slovenskej republiky, Okresný úrad Banská Bystrica & Slovenský hydrometeorologický ústav, 59 pp [cit. 2018-10-28]. Available at: https://enviroportal.sk/uploads/files/Dokumenty/PZKO-Jelsava-Lubenik-2013.pdf

  • Aref’ev SP (1997) Consortium structure of xylotrophic fungal community of Tyumen. Mikol Fitopatol 21:1–8

    Google Scholar 

  • Ayer F, Lüscher P, Egli S (2003) Quelle est la place des champignons supérieurs dans les stations forestiéres? Schweiz. Z. Forstwes. 154:149–160. https://doi.org/10.3188/szf.2003.0149

    Google Scholar 

  • Bacigálová K (1992) New localities of Taphrina carpini (Rostr.) Johans. On Carpinus betulus in Slovakia. Czech Mycol 46:296–302

    Google Scholar 

  • Bajaník Š, Ivanička J, Mello J, Reichwalder P, Pristaš J, Snopko L, Vozár J, Vozárová A (1984) Geological map of the Slovenské rudohorie Mts. Eastern part. 1:50 000. Slovak Geological Office Dionýz Štúr Institute of Geology, Bratislava

  • Barkman JJ, Doing H, Segal S (1964) Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Bot. Neerl. 13:394–419. https://doi.org/10.1111/j.1438-8677.1964.tb00164.x

    Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1:181–189. https://doi.org/10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2

    Google Scholar 

  • Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Naturalist 53:40–47

    Google Scholar 

  • Belnap J, Büdel B, Lange OL (2001) Biological Soil Crusts: Characteristics and Distribution. pp 3–30. In: Belnap J, Lange OL (eds) Biological Soil Crusts: Structure, Function, and Management. Ecological Studies (Analysis and Synthesis), vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56475-8_1

    Google Scholar 

  • Blanár D, Petrášová A (2007) Desmatodon cernuus (Huebener) Bruch & Schimp. – nový druh bryoflóry Slovenska. (Desmatodon cernuus (Huebener) Bruch & Schimp. – a new species in the bryoflora of Slovakia). Reussia, Revúca 4:79–106

    Google Scholar 

  • Bobro M, Hančulák J (2001) Influence of Slovak magnesite processing on the environment. Mineralia Slovaca 33:535–538

    CAS  Google Scholar 

  • Bondartseva MA, Svishch LG (1991) Changes in the species composition of bracket fungi under conditions of anthropogenic impact. In: Problemy lesopatologicheskogo monitoringa v taezhnykh lesakh evropeiskoi chasti SSSR: Tez. dokl. I Vsesoyuz. konf. (Problems of Forest Pathology Monitoring in Boreal Forests of the European Part of the USSR: Abstr. I AllUnion. Conf.), Petrozavodsk, KarNTs AN SSSR

  • Brunner I (2001) Ectomycorrhizas: their role in forest ecosystems under the impact of acidifying pollutants. Perspectives Plant Ecol. Evol. System. 4(1):13–27. https://doi.org/10.1078/1433-8319-00012

    Google Scholar 

  • Bublinec E (1974) Vplyv priemyselných imisií na produkčné a genetické vlastnosti pôd. (Impact of industrial emissions on the production and genetic properties of soils). pp 115–124. In: Sobocký E (ed), Les a priemyselné imisie. (Forest and Industrial Emissions). Veda, Bratislava

  • Ceynowa-Giełdon M, Adamska E (2014) Notes on the genus Thelidium (Verrucariaceae, lichenized Ascomycota) in the Kujawy region (north-central Poland). Ecol. Quest. 19:25–33. https://doi.org/10.12775/EQ.2014.002

    Google Scholar 

  • Cicák A, Mihál I, Kulfan J, Šušlík V, Zach P, Krištín A (1999) Health state of forest tree species and selected groups of fungi and animals in surroundings of a magnesium factory (Central Slovakia). Ekológia (Bratislava) 18:211–222

    Google Scholar 

  • Cicák A, Kellerová D, Kulfan J, Mihál I (2011) Imisie ako škodlivý činiteľ. (emission as a harmful factor). In: Barna M, Kulfan J, Bublinec E (eds) Buk a bukové ekosystémy Slovenska (Beech and Beech Ecosystems in Slovakia). VEDA, Bratislava, pp 555–573

    Google Scholar 

  • Csikósová A, Čulková K, Antošová M (2013) Magnesite industry in the Slovak Republic. Gosp. Surow. Mineral. 29:21–35. https://doi.org/10.2478/gospo-2013-0028

    Google Scholar 

  • Degtjarenko P, Marmor L, Randlane T (2016a) Changes in bryophyte and lichen communities on Scots pines along an alkaline dust pollution gradient. Environ. Sci. Pollut. Res. 23:17413–17425. https://doi.org/10.1007/s11356-016-6933-5

    CAS  PubMed  Google Scholar 

  • Degtjarenko P, Marmor L, Tőrra T, Lerch M, Saag A, Randlane T, Scheidegger Ch (2016b) Impact of alkaline dust pollution on genetic variation of Usnea subfloridana populations. Fungal Biology 120:1165–1174. https://doi.org/10.1016/j.funbio.2016.05.010

    CAS  PubMed  Google Scholar 

  • Degtjarenko P, Matos P, Marmor L, Branquinho C, Randlane T (2018) Functional traits of epiphytic lichens respond to alkaline dust pollution. Fungal Biology 36:81–88. https://doi.org/10.1016/j.funeco,2018,08,006

  • Dierssen K (2001) Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophyt Biblioth 56:1–289

    Google Scholar 

  • DIN/ISO (13878:1998) (1998) Soil quality – Determination of total nitrogen content by dry combustion („elemental analysis“). SÚTN, Bratislava

  • Dostál J, Červenka F (1992) Veľký kľúč na určovanie rastlín 2. (Big key for determining of higher plants). SPN, Bratislava

  • Ďurža O (2008) Impact of magnesite exploitation and processing on environment in Slovakia. Život Prostr 42:48–52

    Google Scholar 

  • Esseen PA (2006) Edge influence on the old-growth forest indicator lichen Alectoria sarmentosa in natural ecotones. J. Veget. Sci. 17:185–194. https://doi.org/10.1658/1100-9233(2006)17[185:EIOTOF]2.0.CO;2

    Google Scholar 

  • Farmer AM (1993) The effects of dust on vegetation – a review. Env. Pollut. 79:63–75. https://doi.org/10.1016/0269-7491(93)90179-R

    CAS  PubMed  Google Scholar 

  • Fellner R (1987a) Mykocenózy mykorrhizných hub, jejich dynamika, struktura a klasifikace. (Mycocoenosis of mycorrhizal fungi, their dynamics, structure and classification). In: Fellner R (ed), Ekologie mykorrhiz a mykorrhizních hub. Imise a mykorrhiza, (Ecology of mycorrhizae and mycorrhitic fungi. Emissions and mycorhiza). Sborník, ČSVSM, Špindlerův Mlýn, pp 137–145

  • Fellner R (1987b) Monitorování zmĕn v druhové diverzitĕ mykorrhizních hub na imisnĕ různĕ exponovaných stanovištích. (Monitoring of changes in species diversity of mycorrhizal fungi on the emission of various exposed habitats). In: Fellner R (ed), Ekologie mykorrhiz a mykorrhizních hub. Imise a mykorrhiza. (Ecology of mycorrhizae and mycorrhitic fungi. Immissions and mycorhiza). Sborník, ČSVSM, Špindlerův Mlýn, pp 93–103

  • Fiala K, Záhora J, Tůma I, Holub P (2004) Importance of plant matter accumulation, nitrogen uptake and utilization in expansion of tall grasses (Calamagrostis epigejos and Arrhenatherum elatius) into acidophilous dry grassland. Ekológia, Bratislava 23:225–240

    Google Scholar 

  • Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Naturalist 58:295–311

    Google Scholar 

  • Frák G (1981) Magnezit Lubeník 1956–1981. Východoslovenské vydavateľstvo, Košice

  • Frati L, Brunialti G, Loppi S (2008) Effects of reduced nitrogen compounds on epiphytic lichen communities in Mediterranean Italy. Sci. Total Environm. 407:630–637. https://doi.org/10.1016/j.scitotenv.2008.07.063

    CAS  PubMed  Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York

  • Fu SS, Li PJ, Feng Q, Li XJ, Li P, Sun YB, Chen Y (2011) Soil quality degradation in a magnesite mining area. Pedosphere 21:98–106. https://doi.org/10.1016/S1002-0160(10)60084-7

    CAS  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577. https://doi.org/10.1126/science.1236404

    Article  CAS  PubMed  Google Scholar 

  • Gilbert OL (1990) The lichen flora of urban wasteland. Lichenologist 22:87–101. https://doi.org/10.1017/S0024282990000056

    Google Scholar 

  • Gordienko PV, Gordienko MV (1987) Antropogennoje vozdejstvie na rozvitie gribnych boleznej lesa. (anthropogenic impact to the fungal diseases of forest). Mikol Fitopatol 21:377–387

    Google Scholar 

  • Govindapyari H, Leleeka M, Nivedita M, Uniyal PL (2010) Bryophytes: indicators and monitoring agents of pollution. NeBIO 1:35–41

    Google Scholar 

  • Guiry MD, Guiry GM (2017) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at: http://www.algaebase.org. 2017 (accessed 31.1.2018)

  • Guttová A, Lackovičová A, Pišút I (2013) Revised and updated checklist of lichens of Slovakia (May 2013). Biologia, Bratislava 68:845–850. https://doi.org/10.2478/s11756-013-0218-y

    Article  Google Scholar 

  • Haapala H, Goltsova N, Pitulko V, Lodenius M (1996) The effects of simultaneous large acidic and alkaline airborne pollutants on forest soil. Environ. Pollut. 94:159–168. https://doi.org/10.1016/S0269-7491(96)00072-3

    CAS  PubMed  Google Scholar 

  • Haapala H, Goltsova N, Lodenius M (2001) Heavy metal solubility in podzolic soils exposed to the alkalizing effect of air pollution. Environ. Pollution 115:33–41. https://doi.org/10.1016/S0269-7491(01)00094-X

    CAS  PubMed  Google Scholar 

  • Hajdúk J (1961) Kvantitatívne a kvalitatívne zmeny fytocenóz spôsobené továrenskými exhalačnými splodinami. (Quantitative and qualitative changes in plant communities caused by factory exhalations). Biológia (Bratislava) 16:404–418

    Google Scholar 

  • Hajdúk J (1965) Vplyv magnezitových exhalačných splodín na vegetáciu a pôdu. (Effect of magnesite exhalation sludge on vegetation and soil). pp 31–39. In: Problémy znečisťovania ovzdušia. Zborník materiálov zo Sympózia o problematike exhalátov na Slovensku. (In: Problems of Air Pollution. Proceedings of symposium on problematic exhalates in Slovakia), Smolenice

  • Hajdúk J (1967) Výsledky geobotanického výskumu pôsobenia magnezitových exhalátov na vegetáciu a pôdu. (results of geobotanic research on the effect of magnesite exhalates on vegetation and soil). Kandidátska dizertačná práca. (dissertation), 285 pp [Depon. In Ústav biológie krajiny SAV, Bratislava]

  • Hajdúk J (1978) Predbežné zistenie a mapové zobrazenie rozsahu ovplyvnenej vegetácie priemyselnými exhalátmi na Slovensku. (preliminary detection and mapping of the extent of the vegetation affected by industrial exhalations in Slovakia). Acta bot. Slov., Ser. A 4:137–147

  • Hajdúk J, Hauskrecht I (1967) Príspevok k výskumu horečnatých pôd v oblasti magnezitových závodov a k ich meliorácii. (Contribution to the study of magnesium soils in magnesite plants and their melioration). Poľnohospodárstvo, Bratislava 13:7–17

    Google Scholar 

  • Hančinský L (1972) Lesné typy Slovenska. SVPL, Bratislava, 307 pp

  • Hančulák J (2000) Vývoj spádovej prašnosti v oblasti závodu SMZ, a.s., Jelšava. (development of the dust deposition in the area surrounding the SMZ, a.s., Jelšava). Acta Montan Slovaca 3:310–312

    Google Scholar 

  • Härtel O, Grill D (1972) Die Leitfähigkeit von Fichtenborken-Extrakten als empfindlicher Indikator für Luftverunreinigung. Eur J For Pathol 2:205–215

    Google Scholar 

  • Hodgetts N (2008) Tortula cernua (Huebener) Lindb. UK Biodiversity Action Plan. Available at: https://www.google.sk/search?q=desmatodon+cernuus&ei=9JgRWtf7CpDUaaCurcgK&start=30&sa=N&biw=1600&bih=747 (accessed 19.11.2017)

  • Hodgetts NG (2015) Checklist and country status of European bryophytes – towards a new Red List for Europe. Irish Wildlife Manuals, No. 84. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, Ireland

  • Holobradý K, Supuka J, Bublinec E, Čaboun V, Dubová M, Gáper J, Greguš C, Hoffman J, Chudík J, Janičina P, Krištín A, Kukla J, Kulfan J, Mihálik A, Mosný J, Patočka J, Saniga M, Šuslík V, Zach P (1994) Rámcové projekty ozdravných opatrení vo vytypovaných oblastiach (Oblasť Jelšava, Lubeník a Hnúšťa). (Framework projects for remedial measures in the designated areas (Jelšava, Lubeník and Hnúšťa). Referenčná úloha 15/PHÚ-OLH, Ústav ekológie lesa SAV Zvolen

  • Hronec O, Vilček J, Adamišin P, Andrejovský P, Huttmanová E (2012) Use of Phragmites australis (Cav.) Trin and its reproduction in the revitalization of contaminated soils. J. Prod Eng 15:107–111

    Google Scholar 

  • ISO (15178:2000) (2000) Soil quality – Determination of total sulphur by dry combustion

  • Jarolímek I, Šibík J, Tichý L, Kliment J, Šibíková I, Hegedüšová K, Valachovič M, Michálková D, Škodová I, Sadloňová J, Zaliberová M, Májeková J (2008) Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava

  • Jenness J (2005) Random Point Generator 1.3. Available at: http://www.jennessent.com/downloads/random_points_online.pdf (accesssed 1.9.2012)

  • Jupina GA (1987) Derevorozrušajuščije griby lesnych geobiocenozov. (Lignicolous fungi of forest geobiocenoses). Mikol Fitopatol 21:82–85

    Google Scholar 

  • Jurko A (1990) Ekologické a socioekonomické hodnotenie vegetácie. (Ecological and socio-economic assessment of vegetation). Príroda, Bratislava

  • Kaleta M (1971) Vplyv magnezitových imisií na zmeny rastlinných spoločenstiev. (Impact of magnesite emissions on changes in plant communities). pp 599–615. In: Zborník prednášok zo zjazdu Slov. Bot. Spol. (In: Proccedings of congress of Slov. Bot. Spol.) SAV, Bratislava

  • Kaleta M (1974a) Vplyv magnezitových imisií na niektoré lesné spoločenstvá. (Impact of magnesite emissions on some forest communities). pp 96–104. In: Sobocký E (ed), Les a priemyselné imisie. (Forest and industrial emissions). Veda, Bratislava

  • Kaleta M (1974b) Vzťah niektorých burinových druhov k magnezitovým imisiám. (relationship of some weed species to magnesite emissions). Acta bot. Slovaca, ser A1:239–244

    Google Scholar 

  • Kaleta M (1975) Vegetačné pomery v oblasti Jelšavy so zreteľom na imisné podmienky. Quaestiones geobiologicae. (Vegetation conditions in the Jelšava area with regard to immission conditions). Problémy biológie krajiny. 17. Veda, Bratislava

  • Kaleta M (1984) Synanthrope vegetation im Bereich von Emissionsquellen. Acta bot. Slov. Acad. Sci. Slov, ser. A (Suppl 1):107–109

  • Kaštovský J, Řeháková K, Bastl M, Vymazal J, King RS (2008) Experimental assessment of phosphorus effects on algal assemblages in dosing mesocosms. In: Richardson C (ed), The Everglades Experiments. Springer, New York. https://doi.org/10.1007/978-0-387-68923-4_18

    Google Scholar 

  • Kirk P (2019) (continuously updated) Index Fungorum. Available at: http://www.indexfungorum.org

  • Koděra M, Andrusovová-Vlčeková G, Belešová O, Briatková D, Dávidová Š, Fejdiová V, Hurai V, Chovan M, Nelišerová E, Ženiš P (1990) Topografická mineralógia Slovenska 2. (Topographic mineralogy of Slovakia). Veda, Bratislava

  • Krippelová T (1982) The influence of emissions from a magnesium factory on ruderal communities. In: Bornkamp R, Lee JA, Seaward MRD (eds) Urban ecology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Krutov VI (1992) Anthropogenic impact on forest communities and the development of mycocenoses. In: Nauchnye osnovy ustoichivosti lesov k derevorazrushayushchim gribam (scientific basis of sustainability of forests to wood destroying Fungi), Nauka, Moscow

  • Kubinská A, Janovicová K (1998) Machorasty (bryophytes). pp 297–332. In: Marhold K, Hindák F (eds), Zoznam nižších a vyšších rastlín Slovenska (Checklist of non-vascular and vascular plants of Slovakia). Veda, Bratislava

  • Kubinská A, Janovicová K, Šoltés R (2001) Aktualizovaný zoznam pečeňoviek, rožtekov a machov Slovenska. (Actual list of Hepaticae, Anthocerotae and Musci of Slovakia). Bryonora 28:4–10

    Google Scholar 

  • Kučera J, Váňa J (2003) Check- and red list of bryophytes of the Czech Republic. Preslia 75:193–222

    Google Scholar 

  • Lara F, Garilleti R, Goffinet B, Draper I, Medina R, Vigalondo B, Mazimpaka V (2016) Lewinskya, a New Genus to Accommodate the Phaneroporous and Monoicous Taxa of Orthotrichum (Bryophyta, Orthotrichaceae). Cryptogam Bryol. 37:361–382. https://doi.org/10.7872/cryb/v37.iss4.2016.361

    Google Scholar 

  • Larsen RS, Bell JNB, James PW, Chimonides PJ, Rumsey FJ, Tremper A, Purvis OW (2007) Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environ. Pollut. 146:332–340. https://doi.org/10.1016/j.envpol.2006.03.033

    CAS  PubMed  Google Scholar 

  • Leško O, Bobro M (1987) Development of dust deposition in the plants of SMZ Jelšava and SMZ Lubeník. Rudy-uhlí-geologický pruzkum 8:232–234

    Google Scholar 

  • Łuczaj Ł, Sadowska B (1997) Edge effect in different groups of organisms: vascular plant, bryophyte and fungi species richness across a forest-grassland border. Folia Geobot Phytotax 32:343–353. https://doi.org/10.1007/BF02821940

    Article  Google Scholar 

  • Lukešová A (2001) Soil algae in brown coal and lignite post-mining areas in central Europe (Czech Republic and Germany). Restor Ecol 9:341–350. https://doi.org/10.1046/j.1526-100X.2001.94002.x

    Article  Google Scholar 

  • Machín J, Navas A (2000) Soil pH changes induced by contamination by magnesium oxides dust. Land Degrad Dev 11:37–50. https://doi.org/10.1002/(SICI)1099-145X(200001/02)11:1<37::AID-LDR366>3.0.CO;2-8

    Article  Google Scholar 

  • Marhold K, Goliašová K, Hegedüšová Z, Hodálová I, Jurkovičová V, Kmeťová E, Letz R, Michalková E, Mráz P, Peniažteková M, Šípošová H, Ťavoda O (1998) Papraďorasty a semenné rastliny (ferns and flowering plants). In: Marhold K, Hindák F (eds) Zoznam nižších a vyšších rastlín Slovenska (Checklist of non-vascular and vascular plants of Slovakia). Veda, Bratislava, pp 333–687

    Google Scholar 

  • Marmor L, Randlane T (2007) Effects of road traffic on bark pH and epiphytic lichens in Tallinn. Folia Cryptog Estonica 43:23–37

    Google Scholar 

  • Michalko J, Berta J, Magic D (1986) Geobotanická mapa ČSSR, Slovenská socialistická republika. (Geobotanical map of ČSSR, Slovak Socialist Republic). Veda, Bratislava

  • Mihál I, Blanár D (2007) Mykoflóra v oblasti magnezitového závodu Slovmag a.s., Lubeník (Slovenské rudohorie – Revúcka vrchovina). (Mycoflora in the area of the magnesite factory Slovmag inc., Lubeník (Slovenské Rudohorie Mts – Revúcka Vrchovina Mts)). Reussia, Revúca 4:35–59

    Google Scholar 

  • Mihál I, Blanár D, Glejdura S (2015) Enhancing knowledge of mycoflora (Myxomycota, Zygomycota, Ascomycota, Basidiomycota) in oak-hornbeam forests in the vicinity of the magnesite plants at Lubeník and Jelšava (Central Slovakia). Thaiszia – J Bot 25:121–142

    Google Scholar 

  • Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens – Monitoring lichens. pp 1–4. In: Nimis PL, Scheidegger C, Wolseley PA (eds), Monitoring with Lichens — Monitoring Lichens. NATO Science Series (Series IV: Earth and Environmental Sciences), vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0423-7_1

    Google Scholar 

  • Nowak A, Plášek V, Nobis M, Nowak S (2016) Epiphytic communities of open habitats in the western Tian-Shan Mts (Middle Asia: Kyrgyzstan). Cryptogam Bryol 37:415–433. https://doi.org/10.7872/cryb/v37.iss4.2016.415

    Article  Google Scholar 

  • Oren A (2014) Cyanobacteria: biology, ecology and evolution. Pp 1–20. Cyanobacteria: an economic perspective. In: Naveen KS, Ashwani KR, Lucas RS (eds), John Wiley & sons. Ltd

  • Paal J, Degtjarenko P (2015) Impact of Alkaline Cement-Dust Pollution on Boreal Pinus sylvestris Forest Communities: A Study at the Bryophyte Synusiae Level. Ann Bot Fenn 52:120–134. https://doi.org/10.5735/085.052.0213

    Article  Google Scholar 

  • Paal J, Degtjarenko P, Suija A, Liira J (2013) Vegetation responses to long-term alkaline cement dust pollution in Pinus sylvestris-dominated boreal forests – niche breadth along the soil pH gradient. Appl Veg Sci 16:248–259. https://doi.org/10.1111/j.1654-109X.2012.01224.x

    Article  Google Scholar 

  • Palice Z, Soldán Z (2004) Lichen and bryophyte species diversity on toxic substrates in the abandoned sedimentation basins of Chvaletice and Bukovina. In: Kovář P (ed) Natural recovery of human-made deposits in landscape (biotic interactions and ore/ash-slag artificial ecosystems). Academia, Praha, pp 200–221

    Google Scholar 

  • Paoli L, Guttová A, Grassi A, Lackovičová A, Senko D, Loppi S (2014) Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia). Ecol. Indicators 40:127–135. https://doi.org/10.1016/j.ecolind.2014.01.011

    CAS  Google Scholar 

  • Paoli L, Guttová A, Grassi A, Lackovičová A, Senko D, Sorbo S, Basile A, Loppi S (2015) Ecophysiological and ultrastructural effects of dust pollution in lichens exposed around a cement plant (SW Slovakia). Environ Sci Pollut Res 22:15891. https://doi.org/10.1007/s11356-015-4807-x

    Article  CAS  Google Scholar 

  • Pišút I, Guttová A, Lackovičová A, Lisická E (2001) Červený zoznam lišajníkov Slovenska. (Red-list of lichens of Slovakia). In: Baláž D, Marhold K, Urban P (eds), Červený zoznam rastlín a živočíchov Slovenska. (Red-list of plants and animals of Slovakia). Ochrana prírody 20(Suppl.):23–30

  • Plášek V, Nowak A, Nobis M, Kusza G, Kochanowska K (2014) Effect of 30 years of road traffic abandonment on epiphytic moss diversity. Environ Monit Assess 186(12):8943–8959. https://doi.org/10.1007/s10661-014-4056-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plášek V, Sawicki J, Ryszard O, Szczecinska M, Kulik T (2015) New taxonomical arrangement of the traditionally conceived genera Orthotrichum and Ulota (Orthotrichaceae, Bryophyta). Acta Mus Siles Sci Natur 64:169–174. https://doi.org/10.1515/cszma-2015-0024

    Article  Google Scholar 

  • Plášek V, Blanár D, Fialová L, Skoupá Z (2016) Remarkable findings of mosses from Orthotrichaceae family in the Muránska planina National Park (Slovakia). Acta Mus Siles Sci Natur 65:167–178. https://doi.org/10.1515/cszma-2016-0021

    Article  Google Scholar 

  • Prach K (1983) Příspěvek k otázkám ekologické sukcese. (Contribution to ecological succession issues). (Doctoral dissertation) ČSAV Praha

  • Prach K, Pyšek P (2001) Using spontaneous succession for restoration of human-disturbed habitats: experience from Central Europe. Ecol Eng 17:55–62. https://doi.org/10.1016/S0925-8574(00)00132-4

    Article  Google Scholar 

  • Prach K, Pyšek P, Bastl M (2001) Spontaneous vegetation succession in human-disturbed habitats: A pattern across seres. Appl Veg Sci 4:83–88. https://doi.org/10.1111/j.1654-109X.2001.tb00237.x

    Article  Google Scholar 

  • Prach K, Lencová K, Řehounková K, Dvořáková H, Jírová A, Konvalinková P, Novák J, Trnková R (2013) Spontaneous vegetation succession at different central European mining sites: a comparison across seres. Environ Sci Pollut Res 20:7680–7685. https://doi.org/10.1007/s11356-013-1563-7

    Article  Google Scholar 

  • Prasanna SNR (2007) Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res 5:103–113

    Google Scholar 

  • Procházková J, Plášek V, Mikulášková E (2016) Mechorosty na borce stromů v údolí Černé Ostravice (CHKO Beskydy). [Bryoflora on tree bark in the Černá Ostravice Valley (protected landscape area Beskydy Mts.)]. Bryonora 57:16–28

    Google Scholar 

  • Řehounek J, Řehounková K, Tropek T, Prach K (2010) Ekologická obnova území narušených těžbou nerostných surovin a průmyslovými deponiemi. (Ecological restoration of areas disturbed by mining and industrial depots). Calla, České Budějovice

  • Santos A, Pinho P, Munzi S, Botelho MJ, Palma-Oliveira JM, Branquinho C (2017) The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape. Environ Sci Pollut Res 24:12038–12048. https://doi.org/10.1007/s11356-017-8964-y

    Article  Google Scholar 

  • Såstad SM, Janssen HB (1993) Interpretation of regional differences in the fungal biota as effect of atmospheric pollution. Mycol Res 97:1451–1458. https://doi.org/10.1016/S0953-7562(09)80216-5

    Article  Google Scholar 

  • Sawicki J, Plášek V, Ochyra R, Szczecińska M, Ślipiko M, Myszczyński K, Kulik T (2017) Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta). Sci Rep 7:4408. https://doi.org/10.1038/s41598-017-04833-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedláková I, Fiala K (2001) Ecological problems of degradation of alluvial meadows due to expanding Calamagrostis epigejos. Ekológia, Bratislava 20(Suppl. 3):226–233

    Google Scholar 

  • Stavishenko IV, Kshnyasev IA (2013) Response of forest communities of xylotrophic fungi on industrial pollution: Multimodel inference. Biol Bull 40:404–413. https://doi.org/10.1134/S1062359013040146

    Article  Google Scholar 

  • STN/ISO (10694:2001) (2001) Soil quality – Determination of total carbon content by dry combustion („elemental analysis“). SÚTN, Bratislava

  • Suija A, Liira J (2017) Community response to alkaline pollution as an adjusting re-assembly between alternative stable states. J. Veg. Sci. 28(3):527–537. https://doi.org/10.1111/jvs.1250

  • Ter Braak, CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY

  • Thüs H, Nascimbene J (2008) Contributions toward a new taxonomy of Central European freshwater species of the lichen genus Thelidium (Verrucariales, Ascomycota). Lichenologist 40:499–521. https://doi.org/10.1017/S0024282908007603

    Google Scholar 

  • Tichý L (2002) JUICE, software for vegetation classification. J. Veg. Sci. 13:451–453. https://doi.org/10.1658/1100-9233(2002)013[0451:JSFVC]2.0.CO;2

    Google Scholar 

  • Ujházy K (2003) Sekundárna sukcesia na opustených lúkach a pasienkoch Poľany. (Secondary succession on abandoned meadows and pastures of the Poľana Mt.) Vedecké štúdie 7/2003/A, TU Zvolen

  • Ulrichs C, Welke B, Mucha-Pelzer T, Goswami A, Mewis I (2008) Effect of solid particulate matter deposits on vegetation: a review. Function Plant Sci Biotechnol 2:56–62

    Google Scholar 

  • Valachovič M, Oťahelová H, Hrivnák R (2001) Isoëto-Nanojuncetea. In: Valachovič M (ed) Rastlinné spoločenstvá Slovenska 3. Vegetácia mokradí. (Plant communities of Slovakia 3. Wetland Vegetation). Veda, Bratislava, pp 345–347

    Google Scholar 

  • Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Google Scholar 

  • Wirth V, Hauck M, Schultz M (2013) Die Flechten Deutschlands. 1, 2. Eugen Ulmer, Stuttgart, 1244 pp [1: 672 pp, 2: 672 pp]

  • Wyatt FA (1916) Influence of calcium and magnesium compounds on plant growth. J Agric Res 6:589–629

    CAS  Google Scholar 

  • Yang D, Zeng D-H, Zhang J, Li L-J, Mao R (2012) Chemical and microbial properties in contaminated soils around a magnesite mine in northeast China. Land Degrad. Dev. 23:256–262. https://doi.org/10.1002/ldr.1077

    Google Scholar 

  • Zaliberová M, Škodová I (2014) Potentillo-Polygonetalia R. Tx. 1947. pp 330–382. In: Hegedüšová Vantarová K, Škodová I (eds), Rastlinné spoločenstvá Slovenska 5. Travinno-bylinná vegetácia (Plant communities of Slovakia. 5. Grassland Vegetation). Veda, Bratislava

  • Zbíral J, Malý S, Honsa I (1997) Analýza půd: jednotné pracovní postupy. Vyd. 1. (Soil analysis: uniform working practices. 1st Edition). Ústrední kontrolní a zkušební ústav zemědelský, Brno

  • Zimmermann DG, Guderley E (2012) Flechten und flechtenbewohnende Pilze auf dem Gelände des ehemaligen Rangierbahnhofes Wuppertal-Vohwinkel (VohRang) unter besonderer Berücksichtigung ephemerer Arten. Jahr. Naturwiss. Vereins Wuppertal 62:223–240

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Anna Petrášová for help with identification of terrestrial bryophytes. We also thank to anonymous reviewers and Michal Slezák (Associate Editor in Biologia) for their very valuable comments on the manuscript. The research was financially supported by the projects of the Slovak Scientific Grant Agency VEGA 2/0032/17, 1/0639/17 and 2/010118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drahoš Blanár.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary S1

Frequency (%) of terrestrial cryptogams (cyanobacteria, lichens, bryophytes) in degradation stages A, B, C and D (XLS 10 kb)

Supplementary S2

Frequency (%) of macromycetes and slime molds in degradation stages A, B, C and D (XLS 35 kb)

Supplementary S3

Frequency (%) of epiphytic bryophytes and epiphytic lichens in degradation stages A, B, C and D (XLS 12 kb)

Supplementary S4

Frequency (%) of vascular plants in degradation stages A, B, C and D (XLS 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanár, D., Guttová, A., Mihál, I. et al. Effect of magnesite dust pollution on biodiversity and species composition of oak-hornbeam woodlands in the Western Carpathians. Biologia 74, 1591–1611 (2019). https://doi.org/10.2478/s11756-019-00344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-019-00344-6

Keywords

Navigation