pp 1–11 | Cite as

How altitudinal gradient affects the diversity and composition of benthic insects in arid areas streams of northern East Algeria?

  • Imène Benzina
  • Abdelkrim Si BachirEmail author
  • Cherif Ghazi
  • Frédéric Santoul
  • Régis Céréghino
Original Article


This study was carried out to evaluate the variation of diversity and composition of benthic insects in streams, along an altitudinal gradient in an arid area of Belezma National Park, Northern East of Algeria. Benthic entomofauna was sampled in the spring season of 2015, 2017 and 2018 at 28 sampling sites distributed along 4 streams unaffected by human pressure. The altitudinal gradient varies between 1045 m and 1500 m. At each site, we measured 5 physicochemical parameters of water and other physical factors describing each site (velocity, depth and width). All of these environmental factors vary significantly with altitude. A total of 78 taxa belonging to 55 families and 8 orders of benthic insects were identified. Both diversity and abundance of studied entomofauna vary with altitudinal gradient. The highest values of diversity were found in the fourth altitudinal zone (AZ4: up to 1400 m, total taxa richness = 52) and AZ3 (1300 to 1400 m, Shannon index = 3.16). The average number of individuals in AZ1 is higher than in all the other altitudinal zones (mean individuals number = 102.75). The General Linear Model analysis shows that the altitudinal gradient is in favour of high diversity but in disfavour of population abundance. The hierarchical clustering analysis revealed three cluster groups of benthic insects, which are altitudinal indicators. Diptera and Ephemeroptera in downstream stations are mainly replaced by Coleoptera in upstream ones.


Altitudinal gradient Diversity Abundance Benthic insects Stream Arid area 



The authors are extremely grateful to the Belezma National Park office for facilitating the fieldwork within the park territory. We quote, especially: Said Abderhmani, Park Director and Karim Gaagaa, chief of the sector of Hamla. Abdelkrim Arar and Amina Labed are also thanked for their invaluable help.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. AFNOR (2005) Qualité de l’eau. Dosage des matières en suspension Méthode par filtration sur filtre en fibres de verre NF EN 872. In AFNOR ReportGoogle Scholar
  2. Allan JD (1975) Faunal replacement and longitudinal zonation in an alpine stream. Verh Int Ver Theor Angew Limnol 19:1646–1652Google Scholar
  3. Allan JD (1995) Stream ecology. The structure and function of running waters. Chapman and Hall, LondonCrossRefGoogle Scholar
  4. Arab A, Lek S, Lounaci A, Park YS (2009) Spatial and temporal patterns of benthic invertebrate communities in an intermittent river (North Africa). Ann Limnol Int J Lim 40:317–327. CrossRefGoogle Scholar
  5. Badri A, Giudicelli J, Prevot G (1987) Effets d’une crue sur la communauté d’invertébrés benthiques d’une rivière méditerranéenne, le Rdat (Maroc). Acta Ecol Ecol Gen 4:481–500Google Scholar
  6. Beauchard O, Gagneur J, Brosse S (2003) Macroinvertebrate richness patterns in north African streams. J Biogeogr 30:1821–1833. CrossRefGoogle Scholar
  7. Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities, 3rd edn. Blackwell Science, Oxford, UKCrossRefGoogle Scholar
  8. Benzina I, Si Bachir A, Saheb M, Santoul F, Céréghino R (2018) Macroinvertebrate communities respond to anthropogenic pressure in arid-land streams of north East Algeria. Vie et milieu - Life and Environment 68:271–280Google Scholar
  9. Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psychol 39:15–22. CrossRefPubMedGoogle Scholar
  10. Bott TL, Brock JT, Dunn CS, Naiman RJ, Ovink RW, Petersen RC (1985) Benthic community metabolism in four temperate stream systems: an inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123:3–45. CrossRefGoogle Scholar
  11. Boukerker H, Si Bachir A (2015) Biodiversity of xylophagous insects and their role in the Cedrus atlantica forests decline in the national park of Belezma, Batna (Algeria). Courrier du Savoir 20:79–90Google Scholar
  12. Boumaiza M (1994) Recherches sur les eaux courantes de Tunisie. Faunistique, Écologie et Biogéographie. Thèse de doctorat d’état es. Sciences Biologiques. Faculté Sciences Tunis, Tunisie, 429 ppGoogle Scholar
  13. Bouzidi A, Giudicelli J (1994) Ecologie et distribution spatiale des macro-invertébrés des eaux courantes du Haut-Atlas marocain. Revue de la Faculté des Sciences Marrakech 8:23–43Google Scholar
  14. Brosse S, Arbuckle CJ, Townsend CR (2003) Habitat scale and biodiversity: influence of catchment, stream reach and bedform scales on local invertebrate diversity. Biodivers Conserv 12:2057–2075. CrossRefGoogle Scholar
  15. Bush A, Nipperess D, Turak E, Hughes L (2012) Determining vulnerability of stream communities to climate change at the landscape scale. Freshw Biol 57:1689–1701. CrossRefGoogle Scholar
  16. Buss DF, Baptista DF, Silveira MP, Nessimian JL, Dorvillé LFM (2002) Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-East Brazil. Hydrobiologia 481:125–136. CrossRefGoogle Scholar
  17. Céréghino R, Oertli M, Bazzanti C, Coccia A, Compin J, Biggs N, Bressi P, Grillas A, Hull T, Kalettka SO (2012) Biological traits of European pond macroinvertebrates. Hydrobiologia 689:51–61. CrossRefGoogle Scholar
  18. Charvet S, Statzner B, Usseglio-Polatera P, Dumont B (2000) Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshw Biol 43:277–296. CrossRefGoogle Scholar
  19. Dedieu N, Rhone M, Vigouroux R, Céréghino R (2015) Assessing the impact of gold mining in headwater streams of eastern Amazonia using Ephemeroptera assemblages and biological traits. Ecol Indic 52:332–340. CrossRefGoogle Scholar
  20. Doledec S, Chessel D (1989) Rythmes saisonniers et composantes stationnelles en milieu aquatique II- Prise en compte et élimination d'effets dans un tableau faunistique. Acta Ecol Ecol Gen 10:207–232 Google Scholar
  21. Frissell CA, Liss WJ, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manag 10:199–214. CrossRefGoogle Scholar
  22. Garrido J, Alaez MF, Cueto JAR (1994) Geographical distribution of Adephaga and Polyphaga (Coleoptera) in the Cantabrian Mountains (Spain): specific richness and analysis of the altitude factor. Arch Hydrobiol 131(3):353–380Google Scholar
  23. Gaschignard O (1984) Impact d'une crue sur les macroinvertébrés benthiques d'un bras du Rhône. Verh Int Ver Limnol 22:1997–2001Google Scholar
  24. Gaston KJ, Spicer JI (1998) Biodiversity: an introduction. Blackwell Science, OxfordGoogle Scholar
  25. Giudicelli J, Dakki M, Dia A (1985) Caractéristiques abiotiques et hydrobiologiques des eaux courantes méditerranéennes. Verh Int Ver Limnol 22:2094–2101Google Scholar
  26. Heino J, Muotka T, Myrkä H, Paavola R, Haemaelaeinen H, Koskenniemi E (2003) Defining macroinvertebrate assemblage types of headwater streams: implications for bioassessment and conservation. Ecol Appl 13:842–852.[0842:DMATOH]2.0.CO;2 CrossRefGoogle Scholar
  27. Henriques-Oliveira AL, Nessimian JL (2010) Aquatic macroinvertebrate diversity and composition in streams along an altitudinal gradient in southeastern Brazil. Biota Neotropica 10:115–128. CrossRefGoogle Scholar
  28. Hynes HBN (1971) Zonation of the invertebrate fauna in a west Indian stream. Hydrobiologia 38:1–8. CrossRefGoogle Scholar
  29. Jacobsen D (2004) Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshw Biol 49:1293–1305. CrossRefGoogle Scholar
  30. Jacobsen D, Schultz R, Encalada A (1997) Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshw Biol 38:247–261. CrossRefGoogle Scholar
  31. Jacobsen D, Dangles O, Andino P, Espinosa R, Hamerlik L, Cadier E (2010) Longitudinal zonation of macroinvertebrates in an Ecuadorian glacier-fed stream: do tropical glacial systems fit the temperate model? Freshw Biol 55:1234–1244. CrossRefGoogle Scholar
  32. Jiang XM, Xiong J, Qiu JW, Wu JM, Wang JW, Xie ZC (2010) Structure of macroinvertebrate communities in relation to environmental variables in a subtropical Asian river system. Int Rev Hydrobiol 95:42–57. CrossRefGoogle Scholar
  33. Lang C, Raymond O (1993) Empirical relationships between diversity of invertebrate communities and altitude in rivers: application to biomonitoring. Aquat Sci 55:188–196. CrossRefGoogle Scholar
  34. Lounaci A, Brosse S, Thomas AGB, Lek S (2000) Abundance, diversity and community structure of macroinvertebrates in an Algerian stream: the Sebaou Wadi. Annls Limnol 36:123–133.
  35. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Malden MAGoogle Scholar
  36. Merz JR, Ochikubo Chan LK (2005) Effects of gravel augmentation on macroinvertebrate assemblages in a regulated California river. River Res Appl 21:61–74. CrossRefGoogle Scholar
  37. Minshall GW (1988) Stream ecosystem theory: a global perspective. J North Amer Benthol Soc 57:263–288. CrossRefGoogle Scholar
  38. Miserendino ML, Pizzolon LA (2000) Macroinvertebrates of a fluvial system in Patagonia: altitudinal zonation and functional structure. Arch Hydrobiol 150:55–83. CrossRefGoogle Scholar
  39. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. CrossRefGoogle Scholar
  40. Nelson SM, Lieberman DM (2002) The influence of flow and other environmental factors on benthic invertebrates in the Sacramento River, USA. Hydrobiologia 489:117–129. CrossRefGoogle Scholar
  41. Palmer C, Palmer A, O’Keeffe J, Palmer R (1994) Macroinvertebrate community structure and altitudinal changes in the upper reach of a warm temperate southern African river. Freshw Biol 32:337–347. CrossRefGoogle Scholar
  42. Pires AM, Cowx IG, Coelho MM (1999) Seasonal changes in fish community structure of intermittent streams in the middle reaches of the Guadiana basin (Portugal). J Fish Biol 54:235–249. CrossRefGoogle Scholar
  43. Pringle CM, Ramirez A (1998) Use of both benthic and drift sampling techniques to assess tropical stream in vertebrate communities along an altitudinal gradient, Costa Rica. Freshw Biol 39:359–373. CrossRefGoogle Scholar
  44. R Development Core Team (2018) R: a language and environment for statistical computing. Vienna: R Foundation for statistical Computing. Available at
  45. Ramirez JJ, Roldán PG, Yepes GA (2004) Altitudinal variation of the numerical structure and biodiversity of the taxocenosis of Ephemeroptera in the south, north, and central regions of the Department of Antioquia, Colombia. Acta Limnol Bras 16(4):329–339Google Scholar
  46. Ricklefs RE, Schluter D (1993) Species diversity in ecological communities. University of Chicago Press, ChicagoGoogle Scholar
  47. Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York, NYGoogle Scholar
  48. Soldner M, Stephen I, Ramos L, Angus R, Wells NC, Grosso A, Crane M (2004) Relationship between macroinvertebrate fauna and environmental variables in small streams of the Dominican Republic. Water Res 38:863–874. CrossRefPubMedGoogle Scholar
  49. Suren A (1994) Macroinvertebrate communities of streams in western Nepal: effects of altitude and land use. Freshw Biol 32:323–336. CrossRefGoogle Scholar
  50. Tachet H, Richoux M, Bournaud M, Usseglio-Polatera P (2014) Invertébrés d’eau douce : Systématique, Biologie, Ecologie. CNRS éditions, ParisGoogle Scholar
  51. Tate CM, Heiny JS (1995) The ordination of benthic invertebrate communities in the South Platte River basin in relation to environmental factors. Freshw Biol 33:439–454. CrossRefGoogle Scholar
  52. Vinson MR, Hawkins CP (1998) Biodiversity of stream insects: variation at local, basin and regional scales. Annu Rev Entomol 43:271–293. CrossRefPubMedGoogle Scholar
  53. Vought LBM, Kullberg A, Petersen RC (1998) Effect of riparian structure, temperature and channel morphometry on detritus processing in channelized and natural woodland streams in southern Sweden. Aquat Conserv Mar Freshw Ecosyst 8:273–285.;2-X CrossRefGoogle Scholar
  54. Ward JV (1986) Altitudinal zonation in a rocky mountain stream. Arch Hydrobiol Suppl 74:133–199Google Scholar
  55. Williams DD, Feltmate BW (1992) Aquatic insects. CAB International XIII, Wallingford, Oxon.
  56. Zouakh DE, Meddour A (2018) Longitudinal ecological zonation in four Algerian streams. Leban Sci J 19(2):135-149.
  57. Zouggaghe F, Moali A (2009) Variabilité structurelle des peuplements de macro- invertébrés benthiques dans le bassin versant de la Soummam (Algérie, Afrique du Nord). Rev Écol (Terre Vie) 64(4):305–321Google Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Département des Sciences de la Nature et de la Vie, Faculté des Sciences Exactes et des Sciences de la Nature et de la VieUniversité Larbi Ben M’HidiOum El BouaghiAlgérie
  2. 2.Département d’Ecologie et Environnement, Faculté des Sciences de la Nature et de la VieUniversité Mostefa Ben BoulaidBatnaAlgérie
  3. 3.Département des Sciences de la Nature et de la Vie, Faculté des Sciences de la Nature et de la Vie et des Sciences de la TerreUniversité de GhardaïaGhardaïaAlgérie
  4. 4.EcoLab, Laboratoire Ecologie Fonctionnelle et EnvironnementUniversité de Toulouse, CNRSToulouseFrance

Personalised recommendations