Advertisement

Biologia

pp 1–14 | Cite as

The anti-invasive activity of Robinia pseudoacacia L. and Amorpha fruticosa L. on breast cancer MDA-MB-231 cell line

  • Danijela M. CvetkovićEmail author
  • Jovana V. Jovankić
  • Milena G. Milutinović
  • Danijela D. Nikodijević
  • Filip J. Grbović
  • Andrija R. Ćirić
  • Marina D. Topuzović
  • Snežana D. Marković
Original Article
  • 16 Downloads

Abstract

The paper investigates anticancer effects of methanol extracts of invasive plant species Robinia pseudoacacia L. (RpE) and Amorpha fruticosa L. (AfE) on breast cancer MDA-MB-231 and healthy MRC-5 cells. The anticancer activity was evaluated through examination of cytotoxic effects, anti-invasive potential and impact on redox status in comparative analysis using their chemical composition. According to the IC50 values, the investigated plants had no significant cytotoxic effects either on healthy cell line MRC-5 or on MDA-MB-231 cancer cells, but they showed great anti-invasive potential by suppressing all investigated parameters of tumor invasion and metastases (Matrix Metalloproteinases (MMP), protein concentration and MMP-9, C-X-C Motif Chemokine Ligand 12 (CXCL-12), Vascular Endothelial Growth Factor (VEGF-A) and Hypoxia-Inducible Factor (HIF-1α) gene expression) in MDA-MB-231 cells. Based on their remarkable anti-invasive potential, RpE and AfE are suitable for use as potential supplements in anticancer therapy or as nutritional food supplements.

Keywords

Amorpha fruticosa L. Anti-invasive potential Anticancer activity Robinia pseudoacaciaBreast cancer 

Abbreviations

RpE

Robinia pseudoacacia L. extract

AfE

Amorpha fruticosa L. extract

PA

Plasminogen activator

NOS

nitric oxide synthase

VEGF

Vascular Endothelial Growth Factor

HIF-1α

Hypoxia-Inducible Factor

CXCL-12

C-X-C Motif Chemokine Ligand 12

MMP-9

Matrix metalloproteinases-9

ROS

Reactive oxygen species

RNS

Reactive nitrogen species

HER-2

Human epidermal growth factor receptor-2

Notes

Acknowledgments

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (project III41010 and III41007). We are grateful to Milica Pešić on donating MRC-5 cell line.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alia M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L (2006) Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr 45(1):19–28.  https://doi.org/10.1007/s00394-005-0558-7 Google Scholar
  2. Alimpić A, Knežević A, Šavikin K, Ćurčić M, Veličković D, Stević T, Matevski V, Stajić M, Marković S, Marin P, Duletić-Laušević S (2016) Composition and biological activities of differentmethanol methanol extracts of Salvia jurisicii, a rare and endemic Macedonian species. Plant Biosys:1–10.  https://doi.org/10.1080/11263504.2016.1219414
  3. Angus S, Piotrowska M (2014) A matter of timing: identifying significant multi-dose radiotherapy improvements by numerical simulation and genetic algorithm search. PLoS One 9(12):e114098.  https://doi.org/10.1371/journal.pone.0114098 Google Scholar
  4. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boka Raton, pp 123–132Google Scholar
  5. Baker M, Cerniglia G, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190(2):360–365.  https://doi.org/10.1016/0003-2697(90)90208-Q Google Scholar
  6. Boots A, Haenen G, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585(2–3):325–337.  https://doi.org/10.1016/j.ejphar.2008.03.008 Google Scholar
  7. Bos R, Zhong H, Hanrahan CF, Mommers E, Semenza G, Pinedo H, Abeloff M, Simons J, van Diest P, van der Wall E (2001) Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 93(4):309–314.  https://doi.org/10.1093/jnci/93.4.309 Google Scholar
  8. Carocho M, Ferreira I (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25.  https://doi.org/10.1016/j.fct.2012.09.021 Google Scholar
  9. Chomczynski P, Sacchi N (1987) Single-step method of RNА isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Аnal Biochem 162:156–159.  https://doi.org/10.1006/abio.1987.9999
  10. Ćurčić M, Stanković M, Mrkalić E, Matović Z, Branković D, Cvetković D, Stanković M, Živanović M, Marković S (2012) Antiproliferative and proapoptotic activities of metanolic methanol methanol extracts from Ligustrum vulgare L. as an individual treatment and in combination with palladium complex. Int J Mol Sci 13(2):2521–2534.  https://doi.org/10.3390/ijms13022521 Google Scholar
  11. Ćurčić M, Stanković M, Cvetković D, Topuzović M, Marković S (2014) Ligustrum vulgare L.: in vitro free radical scavenging activity and pro-oxidant properties in human colon cancer cell lines. Dig J Nanomater Biostruct 9(4):1689–1697Google Scholar
  12. Cvetković D, Milošević B, Cvetković A, Ninković S, Jovankić J, Jovanović D, Marković S (2017a) The concentration of matrix metalloproteinase 9 in the tumor and peritumoral tissue as prognostic marker in breast cancer patients. Vojnosanit Pregl ISSN: 0042-8450.  https://doi.org/10.2298/VSP170313118C
  13. Cvetković D, Živanović M, Milutinović M, Djukić T, Radović M, Cvetković A, Filipović N, Zdravković N (2017b) Real-time monitoring of cytotoxic effects of electroporation on breast and colon cancer cell lines. Bioelectrochemistry 113:85–94.  https://doi.org/10.1016/j.bioelechem.2016.10.005 Google Scholar
  14. Dai J, Mumper R (2010) Plant phenolics: extraction analisys and their antioxidant and anticancer properties. Molecules 15(10):7313–7352.  https://doi.org/10.3390/molecules15107313 Google Scholar
  15. Demeulle M, Btossard M, Page M, Gingras D, Beliveau R (2000) Matrix methalloproteinses inhibition by green tea catechins. Biochim Biophys Acta 1478:51–60.  https://doi.org/10.1016/S0167-4838(00)00009-1
  16. Duffy M, McGowan P, Gallagher W (2008) Cancerinvasion and metastasis: changing views. J Pathol 214:283–293.  https://doi.org/10.1002/path.2282 Google Scholar
  17. Duke JA, Wain KK (1981) Medicinal plants of the world. CRC Press, Boca RatonGoogle Scholar
  18. Fernandis A, Prasad A, Band H, Klösel R, Ganju R (2004) Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23:157–167.  https://doi.org/10.1038/sj.onc.1206910 Google Scholar
  19. Fernando D, Wijesundera R, Soysa P, Silva D, Nanayakkara C (2015) Antioxidant potential, in vitro cytotoxicity and apoptotic effect induced by crude organic extract of Anthracophyllum lateritium against RD sarcoma cells. BMC Complement Altern Med 15:1–9.  https://doi.org/10.1186/s12906-015-0924-9 Google Scholar
  20. Frédérich M, Marcowycz A, Cieckiewicz E, Mégalizzi V, Angenot L, Kiss R (2009) In vitro anticancer potential of tree methanol methanol extracts from the Walloon region forest. Planta Med 75(15):1634–1637.  https://doi.org/10.1055/s-0029-1185867 Google Scholar
  21. Genovesi P (2005) Eradications of invasive alien species in Europe: issues in bioinvasion science. Springer, Berlin, pp 127–133.  https://doi.org/10.1007/1-4020-3870-4_12 Google Scholar
  22. Grbović F, Stanković M, Curčić M, Djordjević N, Seklić D, Topuzović M, Marković S (2013) In Vitro cytotoxic activity of Origanum vulgare L. on HCT-116 and MDA-MB-231 cell lines. Plants 2(3):371–378.  https://doi.org/10.3390/plants2030371 Google Scholar
  23. Griess P (1879) Bemerkungen zu der Abhandlung der HH. Weselky und Benedikt Ueber einige Azoverbindungen Berichte der Deutschen Chemischen Gesellschaft 12:426–428.  https://doi.org/10.1002/cber.187901201117 Google Scholar
  24. Gu J, Makey K, Tucker K, Chinchar E, Mao X, Pei I, Thomas E, Miele L (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc Cell 5:1–10.  https://doi.org/10.1186/2045-824X-5-9 Google Scholar
  25. Guo X, Zhu K, Zhang H, Yao H (2010) Anti-tumor activity of a novel protein obtained from Tartary buckwheat. Int J Mol Sci 11(12):5201–5211.  https://doi.org/10.3390/ijms11125201 Google Scholar
  26. Habib S, Ali A (2011) Biochemistry of nitric oxide. Indian J Clin Biochem 26(1):3–17.  https://doi.org/10.1007/s12291-011-0108-4 Google Scholar
  27. Higuchi H, Bronk S, Takikawa Y, Werneburg N, Takimoto R, El-Diery W, Gores G (2001) The bile acid glycochenodeoxycholate induces TRAIL-receptor 2/DR5 expression and apoptosis. J Biol Chem 276(42):38610–38618.  https://doi.org/10.1074/jbc.M105300200 Google Scholar
  28. Jakovljević T et al (2015) The potential use of Indigobush (Amorpha fruticosa L.) as natural resource of biologically active compounds. South-east Eur For 6:171–178.  https://doi.org/10.15177/seefor.15-13 Google Scholar
  29. Jeon H, Seo M, Choi H, Lee O, Lee B (2014) Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells. Phytother Res 28(11):1701–1709.  https://doi.org/10.1002/ptr.5186 Google Scholar
  30. Katanić J, Mihailović V, Stanković N, Boroja T, Mladenović M, Solujić S, Stanković M, Vrvić M (2015) Dropwort (Filipendula hexapetala Gilb.): potential role as antioxidant and antimicrobial agent. EXCLI J 14:1–20.  https://doi.org/10.17179/excli2014-479 Google Scholar
  31. Kawanishi S, Hiraku Y, Pinlaor S, Ma N (2006) Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 387(4):365–372.  https://doi.org/10.1515/BC.2006.049 Google Scholar
  32. Koepke J, Dresel M, Schmid S, Greulich T, Beutel B, Schmeck B, Vogelmeier C, Janciauskiene S, Koczulla A (2015) Therapy with plasma purified alpha1-antitrypsin (Prolastin®) induces time-dependent changes in plasma levels of MMP-9 and MPO. PLoS One 10(1):e0117497.  https://doi.org/10.1371/journal.pone.0117497 Google Scholar
  33. Kumar S, Pandey A (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750.  https://doi.org/10.1155/2013/162750 Google Scholar
  34. Lamy S, Gingras D, Béliveau R (2002) Green tea Catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res 62(2):381–385 http://cancerres.aacrjournals.org/content/62/2/381.abstract Google Scholar
  35. Lin C, Hou W, Shen S, Juan S, Ko C, Wang L, Chen Y (2008) Quercetin inhibition of tumor invasion via suppressing PKCδ/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis 29(9):1807–1815.  https://doi.org/10.1093/carcin/bgn162 Google Scholar
  36. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCt) method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 Google Scholar
  37. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharm J 4(8):118–126.  https://doi.org/10.4103/0973-7847.70902 Google Scholar
  38. Milutinović М, Stanković М, Cvetković D, Maksimović V, Šmit B, Pavlović R, Marković S (2015) The molecular mechanisms of apoptosis induced by Allium flavum L. and synergistic effects with new-synthesized Pd (II) complex on colon cancer cells. J Food Biochem 39:238–250.  https://doi.org/10.1111/jfbc.12123 Google Scholar
  39. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Meth 65(1-2):55–63.  https://doi.org/10.1016/0022-1759(83)90303-4
  40. Muruzović M, Mladenović K, Stefanović O, Vasić S, Čomić LJ (2016) Methanol methanol extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J Food Drug Anal 24(3):539–547.  https://doi.org/10.1016/j.jfda.2016.02.007 Google Scholar
  41. Myhrstad M, Carlsen H, Nordström O, Blomhoff R, Moskaug J (2002) Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med 32(5):386–393.  https://doi.org/10.1016/S0891-5849(01)00812-7 Google Scholar
  42. Newman D, Cragg G, Snader K (2003) Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 66(7):1022–1037.  https://doi.org/10.1021/np030096l Google Scholar
  43. Nieves-Alicea R, Colburn N, Simeone A, Tari A (2009) Programmed cell death 4 inhibits breast cancer cell invasion by increasing tissue inhibitor of metalloproteinases-2 expression. Breast Cancer Res Treat 114(2):203–209.  https://doi.org/10.1007/s10549-008-9993-5 Google Scholar
  44. Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S (2009) Natural compounds for cancer treatment and prevention. Pharm Res 59(6):365–378.  https://doi.org/10.1016/j.phrs.2009.01.017 Google Scholar
  45. Ohshima H, Tatemichi M, Sawa T (2003) Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 417(1):3–11.  https://doi.org/10.1016/S0003-9861(03)00283-2 Google Scholar
  46. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E, Mori M (2001) Nitric oxide-induced apoptosis in pancreatic b cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci 98(19):10845–10850.  https://doi.org/10.1073/pnas.191207498 Google Scholar
  47. Quettier D, Greissier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin J, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72(1–2):35–42.  https://doi.org/10.1016/S0378-8741(00)00196-3 Google Scholar
  48. Raina K, Tyagi A, Kumar D, Agarwal C (2013) Role of oxidative stress in citotoxicity of grape seed methanol methanol extracts in human breast cancer cells. Food Chem Toxicol 61:187–195.  https://doi.org/10.1016/j.fct.2013.06.039 Google Scholar
  49. Rakha E, El-Sayed M, Green A, Lee A, Robertson J, Ellis I (2007) Prognostic markers in triple-negative breast cancer. Cancer 109(1):25–32.  https://doi.org/10.1002/cncr.22381 Google Scholar
  50. Roberts P, Riley G, Morgan K, Miller R, Hunter J, Middleton S (2001) The physiological expression of inducible nitric oxide synthase (iNOS) in the human colon. J Clin Pathol 54(4):293–297.  https://doi.org/10.1136/jcp.54.4.293 Google Scholar
  51. Ruffa M, Ferraro G, Wagner M, Calcagno M, Campos R, Cavallaio L (2002) Cytotoxic effect of argentine medicinal plant methanol methanol extracts on human hepatocellular carcinoma cell line. J Ethnopharmacol 79(3):335–339.  https://doi.org/10.1016/S0378-8741(01)00400-7 Google Scholar
  52. Shin S, Song J, Hwang B, Noh D, Park S, Kim W, Park S, Kim W, Moon S (2017) HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation. PLoS One 12(2):e0171860.  https://doi.org/10.1371/journal.pone.0171860 Google Scholar
  53. Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41(6):753–758.  https://doi.org/10.1016/S0278-6915(02)00329-0 Google Scholar
  54. Suffness M, Pezzuto J (1990) Assays related to cancer drug discovery. In: Hostettman K (ed) Methods in plant biochemistry: assay for bioactivity. Academic Press, London, pp 71–133Google Scholar
  55. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591.  https://doi.org/10.1038/nrd2803 Google Scholar
  56. Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40.  https://doi.org/10.1016/j.cbi.2005.12.009 Google Scholar
  57. Wong M, Juan F (2005) Real-time PCR for mRNA quantitation. BioTechniques 39(1):75–85.  https://doi.org/10.2144/05391RV01
  58. Wootton-Beard P, Ryan L (2011) A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J Funct Foods 3(4):329–334.  https://doi.org/10.1016/j.jff.2011.05.007 Google Scholar
  59. Yang C, Wang H (2016) Cancer preventive activities of tea Catechins. Molecules 21(12):1679.  https://doi.org/10.3390/molecules21121679 Google Scholar
  60. Yoshino M, Haneda M, Naruse M, Htay H, Tsoubouchi R, Qiao S, Li W, Murakami K, Yokochi T (2004) Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2-deoxyguanosine in DNA and induction of apoptotic cell death. Toxicol in Vitro 18(6):783–789.  https://doi.org/10.1016/j.tiv.2004.03.009 Google Scholar
  61. Yuan C, Liu Z, Zou N, Wang Y, Chen Z (2017) Relationship between expression of CXCR7 and NF-ĸB in breast Cancer tissue and occurrence of breast cancer and lymphatic metastasis. Saudi J Biol Sci 24(8):1767–1770.  https://doi.org/10.1016/j.sjbs.2017.11.009 Google Scholar
  62. Žižić J, Vuković N, Jadranin M, Anđelković B, Tešević V, Kacaniova M, Sukdolak S, Marković S (2013) Chemical composition, cytotoxic and antioxidative sctivities of etanolic methanol methanol extracts of propolis on HCT-116 cell line. J Sci Food Agric 93(12):3001–3009.  https://doi.org/10.1002/jsfa.6132 Google Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Danijela M. Cvetković
    • 1
    Email author
  • Jovana V. Jovankić
    • 1
  • Milena G. Milutinović
    • 1
  • Danijela D. Nikodijević
    • 1
  • Filip J. Grbović
    • 1
  • Andrija R. Ćirić
    • 2
  • Marina D. Topuzović
    • 1
  • Snežana D. Marković
    • 1
  1. 1.Faculty of Science, Department for Biology and EcologyUniversity of KragujevacKragujevacSerbia
  2. 2.Faculty of Science, Department for ChemistryUniversity of KragujevacKragujevacSerbia

Personalised recommendations