Postglacial succession of caddisfly (Trichoptera) assemblages in a central European montane lake

Abstract

The Bohemian Forest lakes, situated along the Czech-German-Austrian border, were strongly affected by atmospheric acidification between the 1950s and the late 1980s. The subsequent chemical recovery of the lake water should precede and enable a biological recovery, including changes in caddisfly (Insecta: Trichoptera) assemblages. Nevertheless, local pre-acidification data and detailed knowledge of the lake district history are missing, making evaluation of lake recovery difficult. We performed high-resolution analysis of caddisfly remains in a 2.2 m long sediment profile from Prášilské Lake covering the complete history of the lake-catchment evolution. Caddisfly larvae are good indicators of environmental conditions and their subfossil remains are well preserved in unconsolidated waterlaid sediments. A total of 10 caddisfly morpho-taxa were found providing a record from 11,400 cal. yr. BP to the present. With the exception of Athripsodes aterrimus, all identified species are currently present in the Bohemian Forest glacial lakes or their inflow streams but not all of them are documented in Prášilské Lake. The caddisfly fauna consisted of acid-resistant, acid-tolerant and eurytopic species since the Early Holocene. Based on our results, the acid, dystrophic state of Prášilské Lake has been occurring since the lake formation. We conclude that the first signs of natural acidification appeared not later than during the Holocene onset in the Bohemian Forest region. Furthermore, we did not detect any abrupt changes in the species composition connected to the period of anthropogenic acidification during the twentieth century. This study provides for the first time a record of postglacial succession of caddisfly assemblages in a central European mountain lake.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Albers D, Migge S, Schaefer M, Scheu S (2004) Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol Biochem 36:155–164. https://doi.org/10.1016/j.soilbio.2003.09.002

    CAS  Article  Google Scholar 

  2. Andersen T, Tysse Å (2008) Life cycle of Chaetopteryx villosa (Fabricius, 1798) (Trichoptera: Limnephilidae) in a lowland- and a mountain-stream in western Norway. Aquat Insects 6(4):217–231. https://doi.org/10.1080/01650428409361187

    Article  Google Scholar 

  3. Beamish RJ (1976) Acidification of lakes in Canada by acid precipitation and the resulting effects on fishes. Water Air Soil Pollut 6:501–514. https://doi.org/10.1007/BF00182888

    CAS  Article  Google Scholar 

  4. Beisel J-N, Usseglio-Polatera P, Thomas S, Moreteau J-C (1998) Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389:73–88. https://doi.org/10.1023/A:1003519429979

    Article  Google Scholar 

  5. Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-Holocene – a synthesis. J Paleolimnol 23:91–114. https://doi.org/10.1023/A:1008079725596

    Article  Google Scholar 

  6. Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. https://doi.org/10.1046/j.1365-2745.1998.8650717.x

    CAS  Article  Google Scholar 

  7. Boyle JF (1995) A simple closure mechanism for a compact, large-diameter, gravity corer. J Paleolimnol 13(1):85–87. https://doi.org/10.1007/BF00678113

    Article  Google Scholar 

  8. Boyle JF (2007) Loss of apatite caused irreversible early-Holocene lake acidification. Holocene 17(4):543–547. https://doi.org/10.1177/0959683607077046

    Article  Google Scholar 

  9. Boyle JF, Chiverrell RC, Plater A, Thrasher I, Bradshaw E, Birks H, Birks J (2013) Soil mineral depletion drives early Holocene lake acidification. Geology 41:415–418. https://doi.org/10.1130/G33907.1

    Article  Google Scholar 

  10. Bradt P, Urban M, Goodman N, Bissell S, Spiegel I (1999) Stability and resilience in benthic macroinvertebrate assemblages - impact of physical disturbance over twenty-five years. Hydrobiologia 403:123–133. https://doi.org/10.1023/A:1003711928980

    Article  Google Scholar 

  11. Braukmann U, Biss R (2004) Conceptual study – an improved method to assess acidification in German streams by using benthic macroinvertebrates. Limnologica 34:433–450. https://doi.org/10.1016/S0075-9511(04)80011-2

    CAS  Article  Google Scholar 

  12. Buczyńska E, Czachorowski S, Buczyński P, Pakulnicka J, Stępień E, Szlauer-Łukaszewska A, Stryjecki R, Zawal A (2017) Environmental heterogeneity at different scales: key factors affecting caddisfly larvae assemblages in standing waters within a lowland river catchment. J Limnol 76(2):305–325. https://doi.org/10.4081/jlimnol.2016.1535

    Article  Google Scholar 

  13. Čada V, Morrissey RC, Michalová Z, Bače R, Janda P, Svoboda M (2016) Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in Central Europe. For Ecol Manag 363:169–178. https://doi.org/10.1016/j.foreco.2015.12.023

    Article  Google Scholar 

  14. Carter VA, Chiverrell RC, Clear JL, Kuosmanen N, Moravcová A, Svoboda M, Svobodová- Svitavská H, van Leeuwen JFN, van der Knaap WO, Kuneš P (2018a) Quantitative palynology informing conservation ecology in the bohemian/Bavarian forest of Central Europe. Front Plant Sci 8:2268. https://doi.org/10.3389/fpls.2017.02268

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carter VA, Moravcová A, Chiverrell RC, Clear JL, Finsinger W, Dreslerová D, Halsall K, Kuneš P (2018b) Holocene-scale fire dynamics of central European temperate spruce–beech forests. Quat Sci Rev 191:15–30. https://doi.org/10.1016/j.quascirev.2018.05.001

    Article  Google Scholar 

  16. Chvojka P (1992) Chrostíci (Trichoptera, Insecta) Tatranského národního parku [Caddisflies (Trichoptera, Insecta) of the Tatra National Park]. Zborník prác o Tatranskom národnom parku 32:165–195. [in Czech, English summary]

  17. Clair TA, Dennis IF, Scruton DA, Gillis M (2007) Freshwater acidification research in Atlantic Canada: a review of results and predictions for the future. Environ Rev 15:153–167. https://doi.org/10.1139/A07-004

    CAS  Article  Google Scholar 

  18. Elias SA (2010) Advances in quaternary entomology. Elsevier, Amsterdam. https://doi.org/10.1016/S1571-0866(09)01225-1

  19. Elias SA, Wilkinson B (1983) Lateglacial insect fossil assemblages from Lobsigensee (Swiss Palteau). Studies in the Late Quaternary of Lobsigensee 3. Rev Paléobiol 2(2):189–204

    Google Scholar 

  20. Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166. https://doi.org/10.1038/35041500

    CAS  Article  PubMed  Google Scholar 

  21. Fjellheim A, Raddum GG (1990) Acid precipitation: biological monitoring of streams and lakes. Sci Total Environ 96:57–66. https://doi.org/10.1016/0048-9697(90)90006-G

    CAS  Article  Google Scholar 

  22. Fott J, Pražáková M, Stuchlík E, Stuchlíková Z (1994) Acidification of lakes in Šumava (Bohemia) and in the high Tatra Mountains (Slovakia). Hydrobiologia 274:37–47. https://doi.org/10.1007/BF00014625

    CAS  Article  Google Scholar 

  23. Frič A (1872) Über die Fauna der Böhmerwaldseen. Sitzungsberichte der königlichen böhmischen Gesellschaft der Wissenschaften in Prag 1872(2):3–12 [in German]

    Google Scholar 

  24. Graf W, Murphy J, Dahl J, Zamora-Muñoz C, López-Rodríguez MJ (2008) Distribution and ecological preferences of European freshwater organisms. Volume 1. Trichoptera. Pensoft Publishers, Sofia and Moscow

  25. Greenwood MT, Agnew MD, Wood PJ (2003) The use of caddisfly fauna (Insecta: Trichoptera) to characterise the Late-Glacial River Trent, England. J Quaternary Sci 18:645–661. https://doi.org/10.1002/jqs.786

    Article  Google Scholar 

  26. Greenwood MT, Wood PJ, Monk WA (2006) The use of fossil caddisfly assemblages in the reconstruction of flow environments from floodplain paleochannels of the river Trent, England. J Paleolimnol 35:747–761. https://doi.org/10.1007/s10933-005-5162-6

    Article  Google Scholar 

  27. Hering D, Meier C, Rawer-Jost C, Feld CK, Biss R, Zenker A, Sundermann A, Lohse S, Böhmer J (2004) Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica 34:398–415. https://doi.org/10.1016/S0075-9511(04)80009-4

    Article  Google Scholar 

  28. Howard LC, Wood PJ, Greenwood MT, Rendell HM (2009) Reconstructing riverine paleo-flow regimes using subfossil insects (Coleoptera and Trichoptera): the application of the LIFE methodology to paleochannel sediments. J Paleolimnol 42:453–466. https://doi.org/10.1007/s10933-008-9298-z

    Article  Google Scholar 

  29. Ings NL, Grey J, King L, McGowan S, Hildrew AG (2017) Modification of littoral algal assemblages by gardening caddisfly larvae. Freshw Biol 62:507–518. https://doi.org/10.1111/fwb.12881

    CAS  Article  Google Scholar 

  30. Ivanov VD (2011) Caddisflies of Russia: Fauna and biodiversity. Zoosymposia 5:171–209. https://doi.org/10.1134/S001387381201006X

    Article  Google Scholar 

  31. Jia J, Gao Y (2017) Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China. J Hydrol 555:155–168. https://doi.org/10.1016/j.jhydrol.2017.10.017

    CAS  Article  Google Scholar 

  32. Klapálek F (1903) Zpráva o výzkumu českých Neuropteroid v r. 1902 [A report on the research of Bohemian Neuropteroids in the year 1902]. Věstník České Akademie Císaře Františka Josefa pro Vědy, Slovesnost a Umění 12:257–264. [in Czech]

  33. Kletetschka G, Vondrák D, Hrubá J, Procházka V, Nábělek L, Svitavská-Svobodová H, Bobek P, Hořická Z, Kadlec J, Takáč M, Stuchlík E (2018) Cosmic-impact event in Lake sediments from Central Europe postdates the Laacher see eruption and Marks onset of the younger Dryas. J Geol 126(6):561–575. https://doi.org/10.1086/699869

    Article  Google Scholar 

  34. Kohout L, Fott J (2006) Restoration of zooplankton in a small acidified mountain Lake (Plešné lake, Bohemian Forest) by reintroduction of key species. Biologia 61(Suppl. 20):S477–S483. https://doi.org/10.2478/s11756-007-0065-9

    Article  Google Scholar 

  35. Kopáček J, Hejzlar J, Porcal P, Nedoma J (1999) Chemistry of Prášilské Lake and its tributaries during the 1998 summer temperature stratification. Silva Gabreta 3:33–48

    Google Scholar 

  36. Kopáček J, Hejzlar J, Kaňa J, Norton SA, Porcal P, Turek J (2009) Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. J Inorg Biochem 103:1439–1448. https://doi.org/10.1016/j.jinorgbio.2009.07.019

    CAS  Article  PubMed  Google Scholar 

  37. Krno I, Šporka F, Galas J, Hamerlík L, Zaťovičová Z, Bitušík P (2006) Littoral benthic macro- invertebrates of mountain lakes in the Tatra Mountains (Slovakia, Poland). Biologia 61(Suppl. 18):S147–S166. https://doi.org/10.2478/s11756-006-0127-4

    CAS  Article  Google Scholar 

  38. Kuneš P, Odgaard BV, Gaillard M-J (2011) Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. J Biogeogr 38:2150–2164. https://doi.org/10.1111/j.1365-2699.2011.02557.x

    Article  Google Scholar 

  39. Langheinrich U, Böhme D, Wegener U, Lüderitz V (2002) Streams in the Harz National Parks (Germany) - a hydrochemical and hydrobiological evaluation. Limnologica 32:309–321. https://doi.org/10.1016/S0075-9511(02)80022-6

    CAS  Article  Google Scholar 

  40. Larsen J, Birks HJB, Raddum GG, Fjellheim A (1996) Quantitative relationships of invertebrates to pH in Norwegian river systems. Hydrobiologia 328:57–74. https://doi.org/10.1007/BF00016900

    CAS  Article  Google Scholar 

  41. Mentlík P, Engel Z, Braucher R, Léanni L, Team A (2013) Chronology of the late Weichselian glaciation in the Bohemian Forest in Central Europe. Quat Sci Rev 65:120–128. https://doi.org/10.1016/j.quascirev.2013.01.020

    Article  Google Scholar 

  42. Michler G (2000) Untersuchungen an Sedimentkernen aus dem Großen Arbersee. Der Bayerische Wald 14(2):3–16 [in German]

    Google Scholar 

  43. Michler G (2001) Untersuchungen an Sedimentkernen aus dem Schwarzen See (Cerne jezero) und Teufelssee (Certovov jezero) im Böhmerwald (Tschechien). Der Bayerische Wald 15(2):20–31 [in German]

    Google Scholar 

  44. Mylona S (1996) Sulphur dioxide emissions in Europe 1880-1991 and their effect on sulphur concentrations and depositions. Tellus B 48:662–689. https://doi.org/10.1034/j.1600-0889.1996.t01-2-00005.x

    Article  Google Scholar 

  45. Norton SA, Perry RH, Saros JE, Jacobson GL Jr, Fernandez IJ, Kopáček J, Wilson TA, SanClemens MD (2011) The controls on phosphorus availability in a Boreal lake ecosystem since deglaciation. J Paleolimnol 46:107–122. https://doi.org/10.1007/s10933-011-9526-9

    Article  Google Scholar 

  46. Norton SA, Kopáček J, Fernandez IJ (2013) Acid rain – acidification and recovery. In: Turekian KK, Holland HD (eds) Treatise on Geochemistry, 2nd edn, vol. 11: Environmental Geochemistry, Elsevier, Oxford, pp 379–414. https://doi.org/10.1016/B978-0-08-095975-7.00910-4

  47. Novák K (1996) Fauna Trichopter Šumavy. Die Trichopterenfauna im Böhmerwald [Fauna of Trichoptera of the Bohemian Forest]. Sborník Jihočeského muzea v Českých Budějovicích, Přírodní vědy 36:51–61. [in Czech, German summary]

  48. Ponel P, Gandouin E, Coope GR, Andrieu-Ponel V, Guiter F, Van Vliet-Lanoe B, Franquet E, Brocandel M, Brulhet J (2007) Insect evidence for environmental and climate changes from younger Dryas to sub- Boreal in a river floodplain at St-Momelin (St-Omer basin, northern France), Coleoptera and Trichoptera. Palaeogeogr Palaeoclimatol Palaeoecol 245:483–504. https://doi.org/10.1002/jqs.634

    Article  Google Scholar 

  49. Pražáková M, Veselý J, Fott J, Majer V, Kopáček J (2006) The long-term succession of cladoceran fauna and palaeoclimate forcing: a 14,600–year record from Plešné Lake, the Bohemian Forest. Biologia 61(Suppl. 20):S387–S399. https://doi.org/10.2478/s11756-007-0072-x

    Article  Google Scholar 

  50. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal. BP. Radiocarbon 55:1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947

    CAS  Article  Google Scholar 

  51. Ross RM, Long ES, Dropkin DS (2008) Response of macroinvertebrate communities to remediation-simulating conditions in Pennsylvania streams influenced by acid mine drainage. Environ Monit Assess 145:323–338. https://doi.org/10.1007/s10661-007-0042-3

    CAS  Article  PubMed  Google Scholar 

  52. Salisbury EJ (1922) Stratification and hydrogen-ion concentration of the soil in relation to leaching and plant succession with special reference to woodlands. J Ecol 9(2):220–240. https://doi.org/10.1177/0959683607077046

    CAS  Article  Google Scholar 

  53. Šámal J (1920) Příspěvek k plecopterologickému a trichopterologickému výzkumu šumavských vod [A contribution to the plecopterological and trichopterological research in Šumava mountains waters]. Časopis Národního Musea, Řada Přírodovědná 94:114–116 [in Czech]

    Google Scholar 

  54. Savić A, Randelović V, Ðorđević M, Karadžić B, Ðokić M, Krpo-Ćetković J (2013) The influence of environmental factors on the structure of caddisfly (Trichoptera) assemblage in the Nišava River (Central Balkan Peninsula). Knowl Manag Aquat Ecosyst 409:03. https://doi.org/10.1051/kmae/2013051

    Article  Google Scholar 

  55. Schartau AK, Moe J, Sandin L, McFarland B, Raddum G (2008) Macroinvertebrate indicators of lake acidification: analysis of monitoring data from UK, Norway and Sweden. Aquat Ecol 42:293–305. https://doi.org/10.1007/s10452-008-9186-7

    CAS  Article  Google Scholar 

  56. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective. Blackwell Publishing, Oxford

    Google Scholar 

  57. Šobr M, Janský B (2016) The morphometric parameters of glacial lakes in the Bohemian Forest. Silva Gabreta 22:31–61

    Google Scholar 

  58. Soldán T, Bojková J, Vrba J, Bitušík P, Chvojka P, Papáček M, Peltanová J, Sychra J, Tátosová J (2012) Aquatic insects of the Bohemian Forest glacial lakes: diversity, long-term changes, and influence of acidification. Silva Gabreta 18(3):123–283

    Google Scholar 

  59. Solem JO, Birks HH (2000) Late-glacial and early-Holocene Trichoptera (Insecta) from Kråkenes Lake, western Norway. J Paleolimnol 23(1):49–56. https://doi.org/10.1023/A:1008064831048

    Article  Google Scholar 

  60. Solem JO, Solem T, Aagaard K, Hanssen O (1997) Colonization and evolution of lakes on the central Norwegian coast following deglaciation and land uplift 9500 to 7800 years B.P. J Paleolimnol 18:269–228. https://doi.org/10.1023/A:1007934825272

    Article  Google Scholar 

  61. Stuchlík E, Bitušík P, Hardekopf D, Hořická Z, Kahounová M, Tátosová J, Vondrák D, Dočkalová K (2017) Complexity in the biological recovery of Tatra mountain lakes from acidification. Water Air Soil Pollut 228:184. https://doi.org/10.1007/s11270-017-3362-0

    CAS  Article  Google Scholar 

  62. Švambera V (1914) Šumavská jezera III. Prášilské jezero. Rozpravy České akademie císaře Františka Josefa Class II 23(16):1–28 [in Czech]

    Google Scholar 

  63. Thomas ER, Wolff EW, Mulvaney R, Steffensen JP, Johnsen SJ, Arrowsmith C, White JWC, Vaughn B, Popp T (2007) The 8.2 ka event from Greenland ice cores. Quat Sci Rev 26(1–2):70–81. https://doi.org/10.1016/j.quascirev.2006.07.017

    Article  Google Scholar 

  64. Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29(6):551–554. https://doi.org/10.1130/0091-7613(2001)029<0551:CEVRTA>2.0.CO;2

    Article  Google Scholar 

  65. Ungermanová L, Kolaříková K, Stuchlík E, Senoo T, Horecký J, Kopáček J, Chvojka P, Tátosová J, Bitušík P, Fjellheim A (2014) Littoral macroinvertebrates of acidified lakes in the Bohemian Forest. Biologia 69(9):1190–1201. https://doi.org/10.2478/s11756-014-0420-6

    Article  Google Scholar 

  66. Vočadlová K, Petr L, Žáčková P, Křížek M, Křížová L, Hutchinson SM, Šobr M (2015) The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic. Boreas 44:769–784. https://doi.org/10.1111/bor.12126

    Article  Google Scholar 

  67. Vrba J, Kopáček J, Fott J (2000) Long-term limnological research of the Bohemian Forest lakes and their recent status. Silva Gabreta 4:7–28

    Google Scholar 

  68. Vrba J, Kopáček J, Tahovská K, Šantrůčková H (2015) Long-term ecological research of glacial lakes in the Bohemian Forest and their catchments. Silva Gabreta 21(1):53–71

    Google Scholar 

  69. Vrba J, Bojková J, Chvojka P, Fott J, Kopáček J, Macek M, Nedbalová L, Papáček M, Rádková V, Sacherová V, Soldán T, Šorf M (2016) Constraints on the biological recovery of the Bohemian Forest lakes from acid stress. Freshw Biol 61:376–395. https://doi.org/10.1111/fwb.12714

    Article  Google Scholar 

  70. Walker MJC, Berkelhammer M, Björk S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on quaternary stratigraphy (International Commission on Stratigraphy). J Quat Sci 27(7):649–659. https://doi.org/10.1002/jqs.2565

    Article  Google Scholar 

  71. Wallace ID (1991) A review of the Trichoptera of Great Britain. Research and Survey in Nature Conservation 32:1–59

    Google Scholar 

  72. Wallace ID, Wallace B, Philipson GN (1990) A key to the case-bearing caddis larvae of Britain and Ireland. Freshwater Biological Association, Ambleside

    Google Scholar 

  73. Waringer J, Graf W (2011) Atlas der mitteleuropäischen Köcherfliegenlarven/atlas of central European Trichoptera larvae. Erik Mauch Verlag, Dinkelscherben

    Google Scholar 

  74. Wiberg-Larsen P, Bennike O, Jensen JB, Lemke W (2001) Trichoptera remains from early Holocene river deposits in the Great Belt, Denmark. Boreas 30:299–306. https://doi.org/10.1111/j.1502-3885.2001.tb01049.x

    Article  Google Scholar 

  75. Williams N (1988) The use of caddisflies (Trichoptera) in palaeoecology. Palaeogeogr Palaeoclimatol Palaeoecol 61(1–4):493–500. https://doi.org/10.1016/0031-0182(88)90069-7

    Article  Google Scholar 

  76. Zamora-Muñoz C, Svensson BW (1996) Survival of caddis larvae in relation to their case material in a group of temporary and permanent pools. Freshw Biol 36:23–31. https://doi.org/10.1046/j.1365-2427.1996.00057.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Alexander Klink for his help with caddisfly remains identification, Jana Petruželová for her comments on recent caddisfly fauna of the Bohemian Forest lakes, Petr Kuneš for allowing us to study the sediment profile, and colleagues for assistance during fieldwork. This study was supported by the Internal Grant Agency of the Faculty of Forestry and Wood Sciences of the Czech University of Life Sciences Prague (IGA grant 21/17), the Czech Grant Foundation (project no. 16-23183Y – PEDECO; project no. 16-06915S – EUROPIA), and the Ministry of Culture of the Czech Republic (DKRVO 2018/12, National Museum, 00023272).

Funding

This study was funded by the Czech Grant Foundation (project no. 16-23183Y and project no. 16-06915S), the Ministry of Culture of the Czech Republic (DKRVO 2018/12, National Museum, 00023272), and the Internal Grant Agency of the Faculty of Forestry and Wood Sciences of the Czech University of Life Sciences Prague (IGA grant 21/17).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Vondrák.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vondrák, D., Schafstall, N.B., Chvojka, P. et al. Postglacial succession of caddisfly (Trichoptera) assemblages in a central European montane lake. Biologia 74, 1325–1338 (2019). https://doi.org/10.2478/s11756-019-00249-4

Download citation

Keywords

  • Natural acidification
  • Holocene
  • Palaeolimnology
  • Macrozoobenthos
  • Lake sediment
  • Erosion events
  • Bohemian Forest