Advertisement

Biologia

, Volume 73, Issue 10, pp 987–1006 | Cite as

Batesian insect-insect mimicry-related explosive radiation of ancient alienopterid cockroaches

  • Peter Vršanský
  • Günter Bechly
  • Qingqing Zhang
  • Edmund A. Jarzembowski
  • Tomáš Mlynský
  • Lucia Šmídová
  • Peter Barna
  • Matúš Kúdela
  • Danil Aristov
  • Sonia Bigalk
  • Lars Krogmann
  • Liqin Li
  • Qi Zhang
  • Haichun Zhang
  • Sieghard Ellenberger
  • Patrick Müller
  • Carsten Gröhn
  • Fangyuan Xia
  • Kyoichiro Ueda
  • Peter Vďačný
  • Daniel Valaška
  • Lucia Vršanská
  • Bo Wang
Original Article

Abstract

Batesian mimicry is a relationship in which a harmful organism (the model) is mimicked by a harmless organism (the mimic), which gains protection because predators mistake it for the model. It is the most widely studied of mimicry complexes and has undoubtedly played an important role in the speciation of various animals especially insects. However, little is known about the early evolution of this important behavior and its evolutionary significance owing to a dearth of paleontological records. Here we report several specialized representatives of the family Alienopteridae from the Early Cretaceous of Brazil, mid-Cretaceous Burmite, and the Eocene of the USA. They exhibit unique morphological adaptations for wasp and ant mimicry and represent one of the oldest evidence of Batesian mimicry in the insect fossil record. Our findings reveal at least 65-million-year coevolution between extinct alienopterids and aculeates. Phylogenetic Bayesian network analysis houses Alienopteridae within Umenocoleidae explosively radiating ~127 Ma. Alienopteridae is the only Mesozoic-type cockroach family which passed K/Pg.

Keywords

Fossil insect Mesozoic amber Cretaceous cockroach Mimicry Hymenoptera Blattaria 

Notes

Acknowledgements

We thank two anonymous reviewers and are grateful to M. Kazimírová, A. Rasnitsyn, V. Perrichot, J. Chen, J. Zhang, V. Jánsky, L. Roller and Ľ. Vidlička for helpful discussion, M. Murata, D. Kohls, Y. Huang, and F. Marsh for kindly providing specimens. This work was supported by the National Natural Science Foundation of China (41572010, 41622201, 41688103), Chinese Academy of Sciences (XDPB05), Slovak Research and Development Agency No. APVV-0436-12, UNESCO-Amba/MVTS supporting grant of Presidium of the Slovak Academy of Sciences (VEGA 0012-14, 2/0042/18), Russian Fund for Basic Research (RFBR 16-04-01498, RFBR N 15-34-20745, RFBR No.18-04-00322), and the Operational Program of Research and Development and the European Fund for Regional Development (EFRD ITMS 26230120004). P.V. is also supported by a NMNH award and E.A.J. by a Leverhulme Emeritus Fellowship.

Author contributions

B.W., P.V., and Q.Z. designed the project and wrote the manuscript with input from all authors. G.B., P. Vď. and D.A. contributed to the discussion. All authors collected data and performed the comparative and analytical work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11756_2018_117_MOESM1_ESM.pdf (564 kb)
Online Resource 1 (PDF 564 kb)
11756_2018_117_MOESM2_ESM.xlsx (29 kb)
Online Resource 2 (XLSX 28.7  kb)
11756_2018_117_MOESM3_ESM.pdf (21.3 mb)
Online Resource 3 (PDF 21835 kb)
11756_2018_117_MOESM4_ESM.pdf (10.6 mb)
Online Resource 4 (PDF 10805 kb)
11756_2018_117_MOESM5_ESM.exe (20.5 mb)
Online Resource 5 (EXE 20974 kb)

References

  1. Bai M, Beutel RG, Klass KD, Zhang WW, Yang XK, Wipfler B (2016) Alienoptera—a new insect order in the roach-mantodean twilight zone. Gondwana Res 39:317–326.  https://doi.org/10.1016/j.gr.2016.02.002 CrossRefGoogle Scholar
  2. Bai M, Beutel RG, Zhang W, Wang S, Hörnig M, Gröhn C, Yan E, Yang X, Wipfler B (2018) A new cretaceous insect with a unique cephalothoracic scissor device. Curr Biol 28:438–443.  https://doi.org/10.1016/j.cub.2017.12.031 CrossRefPubMedGoogle Scholar
  3. Barden P, Grimaldi DA (2014) A diverse ant fauna from the mid-cretaceous of Myanmar (Hymenoptera: Formicidae). PLoS One 9:e93627.  https://doi.org/10.1371/journal.pone.0093627 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barden P, Grimaldi DA (2016) Adaptive radiation in socially advanced stem-group ants from the cretaceous. Curr Biol 26:515–521.  https://doi.org/10.1016/j.cub.2015.12.060 CrossRefPubMedGoogle Scholar
  5. Bell WJ, Roth LM, Nalepa CA (2007) Cockroaches: ecology, behavior and natural history. Johns Hopkins University Press, BaltimoreGoogle Scholar
  6. Bocáková M, Bocák L, Gimmel ML, Motyka M, Vogler AP (2016) Aposematism and mimicry in soft-bodied beetles of the superfamily Cleroidea (Insecta). Zool Scr 45(1):9–21.  https://doi.org/10.1111/zsc.12132 CrossRefGoogle Scholar
  7. Branstetter MG, Danforth BN, Pitts JP et al (2017) Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Curr Biol 27:1019–1025.  https://doi.org/10.1016/j.cub.2017.03.027 CrossRefGoogle Scholar
  8. Brower AWZ (1996) Parallel race formation and the evolution of mimicry in heliconius butterflies: a phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50(1):195–221CrossRefGoogle Scholar
  9. Bryant D, Moulton V (2004) NeighborNet: an agglomerative algorithm for the construction of planar phylogenetic networks. Mol Biol Evol 21:255–265.  https://doi.org/10.1093/molbev/msh018 CrossRefPubMedGoogle Scholar
  10. Ceccarelli F, Crozier RH (2007) Dynamics of the evolution of Batesian mimicry: molecular phylogenetic analysis of ant-mimicking Myrmarachne (Araneae: Salticidae) species and their ant models. J Evol Biol 20:286–295.  https://doi.org/10.1111/j.1420-9101.2006.01199.x CrossRefPubMedGoogle Scholar
  11. Chapman RF (2012) The insects: structure and function, 4th edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  12. Chen SC, Tian CC (1973) A new family of Coleoptera from the lower cretaceous of Kansu. Acta Entomol Sin 16(2):169–178Google Scholar
  13. Chouteau M, Arias M, Joron M (2016) Warning signals are under positive frequency-dependent selection in nature. Proc Natl Acad Sci U S A 113(8):2164–2169.  https://doi.org/10.1073/pnas.1519216113 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Delclòs X, Peñalver E, Arillo A, Engel MS, Nel A, Azar D, Ross A (2016) New mantises (Insecta: Mantodea) in cretaceous ambers from Lebanon, Spain, and Myanmar. Cretac Res 60:91–108.  https://doi.org/10.1016/j.cretres.2015.11.001 CrossRefGoogle Scholar
  15. Engel MS (2001) Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity. Proc Natl Acad Sci USA 98:1661–1664.  https://doi.org/10.1073/pnas.98.4.1661 CrossRefGoogle Scholar
  16. Engel MS, Barden P, Riccio ML, Grimaldi DA (2016) Morphologically specialized termite castes and advanced sociality in the early cretaceous. Curr Biol 26:522–530.  https://doi.org/10.1016/j.cub.2015.12.061 CrossRefGoogle Scholar
  17. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27.  https://doi.org/10.1206/651.1 CrossRefGoogle Scholar
  18. Gao TP, Shih CG, Labandeira CC, Liu X, Wang ZQ, Che YL, Yin ZG, Ren D (2018) Maternal care by Early Cretaceous cockroaches. J Syst Palaeontol:1–13.  https://doi.org/10.1080/14772019.2018.1426059
  19. Grimaldi D (2016) Diverse orthorrhaphan flies (Insecta: Diptera: Brachycera) in amber from the Cretaceous of Myanmar: Brachycera in Cretaceous amber, Part VII. Bull Am Mus Nat Hist 408(1):1–131CrossRefGoogle Scholar
  20. Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, New YorkGoogle Scholar
  21. Grimaldi DA, Ross AJ (2004) Raphidiomimula, an enigmatic new cockroach in cretaceous amber from Myanmar (Burma) (Insecta: Blattodea: Raphidiomimidae). J Syst Palaeontol 2(2):101–104.  https://doi.org/10.1017/S1477201904001142 CrossRefGoogle Scholar
  22. Hail WJ, Smith MC (1994) Geologic map of the southern part of the Piceance Creek Basin, Nothern ColoradoGoogle Scholar
  23. Holmgren NMA, Enquist M (1999) Dynamics of mimicry evolution. Biol J Linn Soc 66:145–158CrossRefGoogle Scholar
  24. Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks. Concepts, algorithms and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Kaddumi HF (2005) Amber of Jordan – the oldest prehistoric insects in fossilized resin, 2nd edn. Publications of the Eternal River Museum of Natural History, AmmanGoogle Scholar
  26. Kania I, Wang B, Szwedo J (2015) Dicranoptycha Osten Sacken, 1860 (Diptera, Limoniidae) from the earliest Cenomanian Burmese amber. Cretac Res 52:522–530.  https://doi.org/10.1016/j.cretres.2014.03.002 CrossRefGoogle Scholar
  27. Kikuchi DW, Pfennig DW (2010) High model-abundance may permit the gradual evolution of Batesian mimicry: an experimental test. Proc R Soc B 277:1041–1048.  https://doi.org/10.1098/rspb.2009.2000 CrossRefPubMedGoogle Scholar
  28. Kočárek P (2018) Alienopterella stigmatica gen. et sp. nov.: the second known species and specimen of Alienoptera extends knowledge about this Cretaceous order (Insecta: Polyneoptera). J Syst Palaeontol.  https://doi.org/10.1080/14772019.2018.1440440
  29. Latreille PA (1810) Considérations générales sur l’ordre naturel des animaux composant les classes des Crustacés, des Arachnides & des Insectes avec un tableau méthodique de leurs genres disposés en familles. Schoell, ParisGoogle Scholar
  30. Li XR, Huang D (2018a) A new cretaceous cockroach with heterogeneous tarsi preserved in Burmese amber (Dictyoptera, Blattodea, Corydiidae). Cretac Res.  https://doi.org/10.1016/j.cretres.2018.07.017 CrossRefGoogle Scholar
  31. Li XR, Huang D (2018b) A new praying mantis from middle cretaceous Burmese amber exhibits bilateral asymmetry of forefemoral spination (Insecta: Dictyoptera). Cretac Res 91:269–273.  https://doi.org/10.1016/j.cretres.2018.06.019 CrossRefGoogle Scholar
  32. Luo ZX (2007) Transformation and diversification in early mammal evolution. Nature 450:1011–1019CrossRefGoogle Scholar
  33. MacGinitie HD (1969) The Eocene Green River flora of northwestern Colorado and northeastern Utah. University of California Press, BerkeleyGoogle Scholar
  34. Mallet J, Joron M (1999) Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance and speciation. Annu Rev Ecol Syst 30:201–233.  https://doi.org/10.1146/annurev.ecolsys.30.1.201 CrossRefGoogle Scholar
  35. Martill DM, Bechly G, Loveridge RF (2007) The Crato fossil beds of Brazil: window into an ancient world. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. McKay IJ (2007) A new genus of the cockroach family Umenocoleidae from Cretaceous deposits at Orapa, Botswana. Palaeontol Afr 42:127Google Scholar
  37. Moland E, Eagle JV, Jones GP (2005) Ecology and evolution of mimicry in coral reef fishes. In Northwestern Colorado. IMAP 2529. US Geological Survey publication, Washington, DCGoogle Scholar
  38. Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, Wallbank RW, Wu GC, Maroja L, Ferguson L, Hanly JJ, Hines H, Salazar C, Merrill RM, Dowling AJ, Ffrench-Constant RH, Llaurens V, Joron M, McMillan WO, Jiggins CD (2016) The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534:106–110.  https://doi.org/10.1038/nature17961 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Norberg RA (1972) The pterostigma of insect wings an inertial regulator of wing pitch. J Comp Physiol 81:9–22CrossRefGoogle Scholar
  40. Ohl M, Spahn PA (2010) A cladistic analysis of the cockroach wasps based on morphological data (Hymenoptera: Ampulicidae). Cladistics 26:49–61.  https://doi.org/10.1111/j.1096-0031.2009.00275.x CrossRefGoogle Scholar
  41. Perrichot V, Wang B, Engel MS (2016) Extreme morphogenesis and ecological specialization among early ants. Curr Biol 26:1468–1472.  https://doi.org/10.1016/j.cub.2016.03.075 CrossRefPubMedGoogle Scholar
  42. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, Kozlov A, Podsiadlowski L, Petersen M, Lanfear R et al (2017) Evolutionary history of the Hymenoptera. Curr Biol 27:1013–1018.  https://doi.org/10.1016/j.cub.2017.01.027 CrossRefPubMedGoogle Scholar
  43. Podstrelená L, Sendi H (2018) Cratovitisma Bechly, 2007 (Blattaria: Umenocoleidae) recorded in Lebanese and Myanmar ambers. Paleontographica A 310(3–6):121–129.  https://doi.org/10.1127/pala/2018/0076 CrossRefGoogle Scholar
  44. Poinar GO (1999) Paleochordodes protus n.g., n.sp. (Nematomorpha, Chordodidae), parasites of a fossil cockroach, with a critical examination of other fossil hairworms and helminths of extant cockroaches (Insecta: Blattaria). Invertebr Biol 118:109–115.  https://doi.org/10.2307/3227053 CrossRefGoogle Scholar
  45. Poinar GO (2009a) Description of an early cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasit Vectors 2:1–17.  https://doi.org/10.1186/1756-3305-2-12 CrossRefGoogle Scholar
  46. Poinar GO (2009b) Early Cretaceous protist flagellates (Parabasalia: Hypermastigia: Oxymonada) of cockroaches (Insecta: Blattaria) in Burmese amber. Cretac Res 30(5):1066–1072.  https://doi.org/10.1016/j.cretres.2009.03.008 CrossRefGoogle Scholar
  47. Poinar GO, Brown AE (2017) An exotic insect Aethiocarenus burmanicus gen. et sp. nov. (Aethiocarenodea ord. nov., Aethiocarenidae fam. nov.) from mid-Cretaceous Myanmar amber. Cretac Res 72:100–104.  https://doi.org/10.1016/j.cretres.2016.12.011 CrossRefGoogle Scholar
  48. Poinar G, Fanti F (2016) New fossil soldier beetles (Coleoptera: Cantharidae) in Burmese, Baltic and Dominican amber. Palaeodiversity 9:1–7CrossRefGoogle Scholar
  49. Quicke DLJ (2017) Mimicry, crypsis, masquerade and other adaptive resemblances. Wiley-Blackwell, BostonGoogle Scholar
  50. Rajter Ľ, Vďačný P (2016) Rapid radiation, gradual extinction and parallel evolution challenge generic classification of spathidiid ciliates (Protista, Ciliophora). Zool Scr 45:200–223.  https://doi.org/10.1111/zsc.12143 CrossRefGoogle Scholar
  51. Ross A, Mellish C, York P, Crighton B (2010) Biodiversity of fossils in amber from the major world deposits. In: Penney D (ed) . Siri Scientific Press, Manchester, pp 208–235Google Scholar
  52. Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, OxfordCrossRefGoogle Scholar
  53. Schmied H, Lambertz M, Geissler P (2013) New case of true mimicry in cockroaches (Blattodea). Entomol Sci 16:119–121.  https://doi.org/10.1111/j.1479-8298.2012.00529.x CrossRefGoogle Scholar
  54. Sendi H, Azar D (2017) New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretac Res 72:13–17.  https://doi.org/10.1016/j.cretres.2016.11.013 CrossRefGoogle Scholar
  55. Shi GH, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang MC, Lei WY, Li QL, Li XH (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac Res 37:155–163.  https://doi.org/10.1016/j.cretres.2012.03.014 CrossRefGoogle Scholar
  56. Šmídová L, Lei X (2017) The earliest amber-recorded type cockroach family was aposematic (Blattaria: Blattidae). Cretac Res 72:189–199.  https://doi.org/10.1016/j.cretres.2017.01.008 CrossRefGoogle Scholar
  57. Smith RDA, Ross AJ (2018) Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. Earth Env Sci TR Soc 107:239–247.  https://doi.org/10.1017/S1755691017000287 CrossRefGoogle Scholar
  58. Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Ver. 4. Sinauer Associates, SunderlandGoogle Scholar
  59. Topper TP, Strotz LC, Holmer LE, Zhang ZF, Tait NN, Caron JB (2015) Competition and mimicry: the curious case of chaetae in brachiopods from the middle Cambrian burgess shale. BMC Evol Biol 15:42.  https://doi.org/10.1186/s12862-015-0314-4 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Turner JRG (1984) Mimicry: the palatability spectrum and its consequences. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic, London, pp 141–161Google Scholar
  61. Vidlička Ľ (2001) Blattaria – šváby, Mantodea – modlivky (Insecta: Orthopteroidea). Fauna Slovenska. Veda, vydavateľstvo SAV, BratislavaGoogle Scholar
  62. Vršanský P (2003) Umenocoleoidea – an amazing lineage of aberrant insects (Insecta, Blattaria). AMBA projekty 7(1):1–32Google Scholar
  63. Vršanský P, Bechly GN (2015) New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the upper cretaceous Myanmar amber. Geol Carpath 66(2):463–475.  https://doi.org/10.1515/geoca-2015-0015 CrossRefGoogle Scholar
  64. Vršanský P, Oružinský R, Aristov D, Wei DD, Vidlička Ľ, Ren D (2017) Temporary deleterious mass mutations relate to originations of cockroach families. Biologia 72(8):886–912.  https://doi.org/10.1515/biolog-2017-0096
  65. Vršanský P, Šmídová L, Valaška D, Barna P, Vidlička L, Takáč P, Pavlik L, Kúdelová T, Karim TS, Zelagin D, Smith D (2016) Origin of origami cockroach reveals long-lasting (11 Ma) phenotype instability following viviparity. Sci Nat 103:78.  https://doi.org/10.1007/s00114-016-1398-4
  66. Vršanský P, Vršanská L, Beňo M, Bao T, Lei XJ, Ren XJ, Wu H, Šmídová L, Bechly G, Jun L, Yeo M, Jarzembowski E (2018) Pathogenic DWV infection symptoms in a cretaceous cockroach. Paleontographica A 311(1).  https://doi.org/10.1127/0375-0442/2018/0000/0084
  67. Vršanský P, Wang B (2017) A new cockroach, with bipectinate antennae, (Blattaria: Olidae fam. nov.) further highlights the differences between the Burmite and other faunas. Biologia 72(11):1327–1333. DOI:  https://doi.org/10.1515/biolog-2017-0144
  68. Wang B, Xia FY, Engel MS, Perrichot V, Shi GL, Zhang HC, Chen J, Jarzembowski EA, Wappler T, Rust J (2016) Debris-carrying camouflage among diverse lineages of cretaceous insects. Sci Adv 2:e1501918.  https://doi.org/10.1126/sciadv.1501918 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wappler T, Garrouste R, Engel MS, Nel A (2013) Wasp mimicry among Palaeocene reduviid bugs from Svalbard. Acta Palaeontol Pol 58:883–887.  https://doi.org/10.4202/app.2011.0202 Google Scholar
  70. Wiley EO, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics, 2nd edn. Wiley-Blackwell, HobokenCrossRefGoogle Scholar
  71. Xu X, Zhou ZH, Dudley R, Mackem S, Chuong CM, Erickson GM, Varricchio DG (2014) An integrative approach to understanding bird origins. Science 346:2931.  https://doi.org/10.1126/science.1253293 CrossRefGoogle Scholar
  72. Yang Z (2014) Molecular evolution: A statistical approach. Oxford University Press, OxfordCrossRefGoogle Scholar
  73. Zhang WW, Cai WZ, Li WZ, Yang XG, Ge SQ (2017) A new species of Chresmodidae from mid-cretaceous amber discovered in Myanmar. Zool Syst 42(2):243–247.  https://doi.org/10.11865/zs.201714 CrossRefGoogle Scholar
  74. Zhang Z, Schneider JW, Hong Y (2012) The most ancient roach (Blattodea): a new genus and species from the earliest Late Carboniferous (Namurian) of China, with a discussion of the phylomorphogeny of early blattids. J Syst Palaeontol 11(1):27–40.  https://doi.org/10.1080/14772019.2011.634443 CrossRefGoogle Scholar
  75. Zrzavý Z, Nedvěd O (1999) Evolution of mimicry in the New World Dysdercus (Hemiptera: Pyrrhocoridae). J Evol Biol 12:956–969.  https://doi.org/10.1046/j.1420-9101.1999.00102.x CrossRefGoogle Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Peter Vršanský
    • 1
    • 2
    • 3
    • 4
  • Günter Bechly
    • 5
  • Qingqing Zhang
    • 6
    • 7
  • Edmund A. Jarzembowski
    • 6
    • 8
  • Tomáš Mlynský
    • 2
    • 9
  • Lucia Šmídová
    • 10
    • 11
  • Peter Barna
    • 2
  • Matúš Kúdela
    • 11
  • Danil Aristov
    • 3
    • 12
  • Sonia Bigalk
    • 13
  • Lars Krogmann
    • 13
  • Liqin Li
    • 6
  • Qi Zhang
    • 6
    • 7
  • Haichun Zhang
    • 6
  • Sieghard Ellenberger
    • 14
  • Patrick Müller
    • 15
  • Carsten Gröhn
    • 16
  • Fangyuan Xia
    • 17
  • Kyoichiro Ueda
    • 18
  • Peter Vďačný
    • 10
  • Daniel Valaška
    • 19
  • Lucia Vršanská
    • 19
  • Bo Wang
    • 6
    • 20
  1. 1.Institute of ZoologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Earth Science InstituteSlovak Academy of SciencesBratislavaSlovakia
  3. 3.Paleontological InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Research Center of Quantum Informatics, Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  5. 5.BöblingenGermany
  6. 6.State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  7. 7.University of Sciences and Technology of ChinaHefeiChina
  8. 8.Department of Earth SciencesNatural History MuseumLondonUK
  9. 9.Balneological Museum PiešťanyPiešťanySlovakia
  10. 10.Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  11. 11.Faculty of Natural SciencesCharles UniversityPrahaCzech Republic
  12. 12.Cherepovets State UniversityCherepovetsRussia
  13. 13.Staatliches Museum für Naturkunde StuttgartStuttgartGermany
  14. 14.KasselGermany
  15. 15.KäshofenGermany
  16. 16.Amber Council at Geological-Palaeontological InstituteUniversity of HamburgHamburgGermany
  17. 17.ShanghaiChina
  18. 18.Kitakyushu Museum of Natural History & Human HistoryFukuokaJapan
  19. 19.BratislavaSlovakia
  20. 20.Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of ScienceBeijingChina

Personalised recommendations