Essential oils against multidrug resistant gram-negative bacteria

Abstract

Multi-drug resistant uropathogens are responsible for urinary tract infections. The antibacterial activity of seven essential oils, oregano, thyme, clove, arborvitae, cassia, lemongrass, tea tree) was investigated by agar diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations against five multidrug resistant isolates namely Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloaceae, Morganella morganii, Proteus mirabilis. Oregano, thyme, cassia had antibacterial activity with inhibition zones ranging 25–39 mm; clove, arborvitae, tea tree and lemongrass 12–15 mm. The essential oils showed antibacterial activities with MICs ranged from 0.005% (w/v) to 0.5% (w/v). Thyme had the same MIC and MBC on all strains. The effects of the vapors of the essential oils were also tested by placing the oils on the underside of the Petri dish lid. Thyme, oregano and cassia essential oils strongly inhibited the growth of the clinical strains of bacteria tested in vapor phase. This study demonstrates the potential of investigated essential oils as natural alternatives for further application in hospital therapies in order to retard or inhibit the bacterial growth. For the first time antibacterial effects of essential oils (clove, arborvitae, tea tree, lemongrass, and cassia) were evaluated against Enterobacter cloaceae and Morganella morganii clinical isolates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Abbreviations

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

EOs:

Essential oils

MDR:

Multi-drug resistant

UTIs:

Urinary tract infections

OR:

Oregano

TY:

Thyme

TT:

Tea tree

CA:

Cassia

LG:

Lemongrass

CL:

Clove

AR:

Arborvitae

GC/MS:

Gas chromatography-mass spectrometry

DMSO:

Dimethyl sulfoxide

MHB:

Mueller Hinton broth

CEF:

Cefuroxime

CTX:

Cefotaxime

CAZ:

Ceftazidime

CPM:

Cefepime

SUB:

Sulbactam

AMP:

Ampicillin

AMS:

Ampicillin + sulbactam

TIG:

Tigecykline

TET:

Tetracycline

CLM:

Clotrimazole

CIP:

Ciprofloxacin

COL:

Colistin

GEN:

Gentamycin

TOB:

Tobramycin

AMI:

Amikacin

ETP:

Ertapenem

MRP:

Propenem

CFZ:

Cefazolin

References

  1. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils - a review. Food Chem Toxicol 46:446–475. https://doi.org/10.1016/j.fct.2007.09.106

    Article  PubMed  CAS  Google Scholar 

  2. Bischoff S, Walter T, Gerigk M, Ebert M, Vogelmann R (2018) Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect Dis 18(1):56. https://doi.org/10.1186/s12879-018-2960-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006) Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54(5):1822–1828. https://doi.org/10.1021/jf051922u

    Article  PubMed  CAS  Google Scholar 

  4. Echeverrigaray S, Michelim L, Longaray Delamare AP, Andrade CP, Pinto da Costa SO, Zacaria J (2008) The effect of monoterpenes on swarming differentiation and aemolysin activity in Proteus mirabilis. Molecules 13(12):3107–3116. https://doi.org/10.3390/molecules13123107

    Article  PubMed  CAS  Google Scholar 

  5. Edwards-Jones V, Buck R, Shawcross SG, Dawson MM, Dunn K (2004) The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns 30:772–777. https://doi.org/10.1016/j.burns.2004.06.006

    Article  PubMed  CAS  Google Scholar 

  6. Fournomiti M, Kimbaris A, Mantzourani I, Plessas S, Theodoridou I, Papaemmanouil V, Kapsiotis I, Panopoulou M, Stavropoulou E, Bezirtzoglou EE, Alexopoulos A (2015) Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis) and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb Ecol Health Dis 26:23289–23295. https://doi.org/10.3402/mehd.v26.23289

    PubMed  CAS  Article  Google Scholar 

  7. Ganjewala D, Gupta AK (2013) Lemongrass (Cymbopogon flexuosus Steud.) Whats essential oil: overview and biological activities. In: Govil JN, Bhattacharya S (eds) Recent progress in medicinal plants, New Delhi, India pp 235–271

  8. Harbottle H, Thakur S, Zhao S, White DG (2006) Genetics of antimicrobial resistance. Anim Biotechnol 1:111–124. https://doi.org/10.1080/10495390600957092

    Article  CAS  Google Scholar 

  9. Högberg LD, Heddini A, Cars O (2010) The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol Sci 31:509–515. https://doi.org/10.1016/j.tips.2010.08.002

    Article  PubMed  CAS  Google Scholar 

  10. Horcajada JP, Shaw E, Padilla B, Pintado V, Calbo E, Benito N, Gamallo R, Gozalo M, Rodriguez-Bano J (2013) Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: a prospective multicentre cohort study in the era of antimicrobial resistance. Clin Microbiol Infect 19(10):962–968. https://doi.org/10.1111/1469-0691.12089

    Article  PubMed  CAS  Google Scholar 

  11. Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, Lee KT (2003) Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett 196:143–152. https://doi.org/10.1016/S0304-3835(03)00238-6

    Article  PubMed  CAS  Google Scholar 

  12. Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour Technol 99:8788–8795. https://doi.org/10.1016/j.biortech.2008.04.048

    Article  PubMed  CAS  Google Scholar 

  13. Lee HS, Ahn YJ (1998) Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. J Agric Food Chem 46:8–12. https://doi.org/10.1021/jf970548y

    Article  PubMed  CAS  Google Scholar 

  14. Mahmoud AM, El-Baky RMA, Ahmed ABF, Gad GFM (2016) Antibacterial activity of essential oils and in combination with some standard antimicrobials against different pathogens isolated from some clinical specimens. Am J Microbiol Res 4(1):16–25. https://doi.org/10.12691/ajmr-4-1-2

    CAS  Article  Google Scholar 

  15. Malik T, Singh P (2010) Antimicrobial effects of essential oils against uropathogens with varying sensitivity to antibiotics. Asian J Biol Sci 3(2):92–98

    Article  Google Scholar 

  16. Miguel MG (2010) Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 15:9252–9287. https://doi.org/10.3390/molecules15129252

    Article  PubMed  CAS  Google Scholar 

  17. Mith H, Dure R, Delcenserie V, Zhiri A, Daube G, Clinquart A (2014) Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci Nutr 2(4):403–416. https://doi.org/10.1002/fsn3.116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Pavela R (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76(7):691–696. https://doi.org/10.1016/j.fitote.2005.06.001

    Article  PubMed  CAS  Google Scholar 

  19. Ponce AG, Fritz R, Del Valle CE, Roura SI (2003) Antimicrobial activity of essential oils on native microbial population of organic Swiss chard. Lebensm Wiss Technol 36:679–684. https://doi.org/10.1016/S0023-6438(03)00088-4

    Article  CAS  Google Scholar 

  20. Puškárová A, Bučková M, Kraková L, Pangallo D, Kozics K (2017) The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci Rep 7:8211. https://doi.org/10.1038/s41598-017-08673-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crop Prod 62:250–264. https://doi.org/10.1016/j.indcrop.2014.05.055

    Article  CAS  Google Scholar 

  22. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure EO, Kahlmeter G, Kruse H, Laxminarayan R, Liebana E, Lopez-Cerero E, MacGowan A, Martins M, Rodriguez-Bano J, Rolain JM, Segovia C, Sigauque B, Taconelli E, Wellington E, Vila J (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29. https://doi.org/10.1016/j.nmni.2015.02.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Russo A, Formisano C, Rigano D, Cardile V, Apostolides N, Senatore AF (2016) Comparative phytochemical profile and antiproliferative activity on human melanoma cells of essential oils of three Lebanese Salvia species. Ind Crop Prod 83:492–499. https://doi.org/10.1016/j.indcrop.2015.12.080

    Article  CAS  Google Scholar 

  24. Sakkas H, Gousia P, Economou V, Sakkas V, Petsios S, Papadopoulou C (2016) In vitro antimicrobial activity of five essential oils on multidrug resistant gram-negative clinical isolates. J Intercult Ethnopharmacol 5(3):212–218. https://doi.org/10.5455/jice.20160331064446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sienkiewicz M, Łysakowska M, Denys P, Kowalczyk E (2012) The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microb Drug Resist 18(2):137–148. https://doi.org/10.1089/mdr.2011.0080

    Article  PubMed  Google Scholar 

  26. Sydnor ERM, Perl TM (2011) Hospital epidemiology and infection control in acutecare settings. Clin Microbiol Rev 24(1):141–146. https://doi.org/10.1128/CMR.00027-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Tsiri D, Graikou K, Pobłocka-Olech L, Krauze-Baranowska M, Spyropoulos C, Chinou I (2009) Chemosystematic value of essential oil compostion of Thuja species cultivated in Poland—antimicrobial activity. Molecules 14:4707–4715. https://doi.org/10.3390/molecules14114707

  28. Wayne PA (2017) Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100

  29. Wright GD (2014) Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol 60(3):147–154. https://doi.org/10.1139/cjm-2014-0063

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Hana Drahovská (Faculty of Natural Sciences of the Comenius University, Bratislava) for providing bacterial strains. This study was funded by VEGA projects no. 2/0061/17 “Innovative disinfection strategies: the essential oils effect on microflora and materials of cultural heritage objects”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Domenico Pangallo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bučková, M., Puškárová, A., Kalászová, V. et al. Essential oils against multidrug resistant gram-negative bacteria. Biologia 73, 803–808 (2018). https://doi.org/10.2478/s11756-018-0090-x

Download citation

Keywords

  • Antibacterial activity
  • Essential oils
  • Multi-drug resistant bacteria
  • Uropathogens
  • Vapor phase