Advertisement

Biologia

, Volume 73, Issue 8, pp 803–808 | Cite as

Essential oils against multidrug resistant gram-negative bacteria

  • Mária Bučková
  • Andrea Puškárová
  • Viktória Kalászová
  • Zuzana Kisová
  • Domenico Pangallo
Original Article
  • 56 Downloads

Abstract

Multi-drug resistant uropathogens are responsible for urinary tract infections. The antibacterial activity of seven essential oils, oregano, thyme, clove, arborvitae, cassia, lemongrass, tea tree) was investigated by agar diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations against five multidrug resistant isolates namely Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloaceae, Morganella morganii, Proteus mirabilis. Oregano, thyme, cassia had antibacterial activity with inhibition zones ranging 25–39 mm; clove, arborvitae, tea tree and lemongrass 12–15 mm. The essential oils showed antibacterial activities with MICs ranged from 0.005% (w/v) to 0.5% (w/v). Thyme had the same MIC and MBC on all strains. The effects of the vapors of the essential oils were also tested by placing the oils on the underside of the Petri dish lid. Thyme, oregano and cassia essential oils strongly inhibited the growth of the clinical strains of bacteria tested in vapor phase. This study demonstrates the potential of investigated essential oils as natural alternatives for further application in hospital therapies in order to retard or inhibit the bacterial growth. For the first time antibacterial effects of essential oils (clove, arborvitae, tea tree, lemongrass, and cassia) were evaluated against Enterobacter cloaceae and Morganella morganii clinical isolates.

Keywords

Antibacterial activity Essential oils Multi-drug resistant bacteria Uropathogens Vapor phase 

Abbreviations

MIC

Minimum inhibitory concentration

MBC

Minimum bactericidal concentration

EOs

Essential oils

MDR

Multi-drug resistant

UTIs

Urinary tract infections

OR

Oregano

TY

Thyme

TT

Tea tree

CA

Cassia

LG

Lemongrass

CL

Clove

AR

Arborvitae

GC/MS

Gas chromatography-mass spectrometry

DMSO

Dimethyl sulfoxide

MHB

Mueller Hinton broth

CEF

Cefuroxime

CTX

Cefotaxime

CAZ

Ceftazidime

CPM

Cefepime

SUB

Sulbactam

AMP

Ampicillin

AMS

Ampicillin + sulbactam

TIG

Tigecykline

TET

Tetracycline

CLM

Clotrimazole

CIP

Ciprofloxacin

COL

Colistin

GEN

Gentamycin

TOB

Tobramycin

AMI

Amikacin

ETP

Ertapenem

MRP

Propenem

CFZ

Cefazolin

Notes

Acknowledgments

The authors are grateful to Dr. Hana Drahovská (Faculty of Natural Sciences of the Comenius University, Bratislava) for providing bacterial strains. This study was funded by VEGA projects no. 2/0061/17 “Innovative disinfection strategies: the essential oils effect on microflora and materials of cultural heritage objects”.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils - a review. Food Chem Toxicol 46:446–475.  https://doi.org/10.1016/j.fct.2007.09.106 CrossRefPubMedGoogle Scholar
  2. Bischoff S, Walter T, Gerigk M, Ebert M, Vogelmann R (2018) Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect Dis 18(1):56.  https://doi.org/10.1186/s12879-018-2960-9 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006) Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54(5):1822–1828.  https://doi.org/10.1021/jf051922u CrossRefPubMedGoogle Scholar
  4. Echeverrigaray S, Michelim L, Longaray Delamare AP, Andrade CP, Pinto da Costa SO, Zacaria J (2008) The effect of monoterpenes on swarming differentiation and aemolysin activity in Proteus mirabilis. Molecules 13(12):3107–3116.  https://doi.org/10.3390/molecules13123107 CrossRefPubMedGoogle Scholar
  5. Edwards-Jones V, Buck R, Shawcross SG, Dawson MM, Dunn K (2004) The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns 30:772–777.  https://doi.org/10.1016/j.burns.2004.06.006 CrossRefPubMedGoogle Scholar
  6. Fournomiti M, Kimbaris A, Mantzourani I, Plessas S, Theodoridou I, Papaemmanouil V, Kapsiotis I, Panopoulou M, Stavropoulou E, Bezirtzoglou EE, Alexopoulos A (2015) Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis) and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb Ecol Health Dis 26:23289–23295.  https://doi.org/10.3402/mehd.v26.23289 PubMedCrossRefGoogle Scholar
  7. Ganjewala D, Gupta AK (2013) Lemongrass (Cymbopogon flexuosus Steud.) Whats essential oil: overview and biological activities. In: Govil JN, Bhattacharya S (eds) Recent progress in medicinal plants, New Delhi, India pp 235–271Google Scholar
  8. Harbottle H, Thakur S, Zhao S, White DG (2006) Genetics of antimicrobial resistance. Anim Biotechnol 1:111–124.  https://doi.org/10.1080/10495390600957092 CrossRefGoogle Scholar
  9. Högberg LD, Heddini A, Cars O (2010) The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol Sci 31:509–515.  https://doi.org/10.1016/j.tips.2010.08.002 CrossRefPubMedGoogle Scholar
  10. Horcajada JP, Shaw E, Padilla B, Pintado V, Calbo E, Benito N, Gamallo R, Gozalo M, Rodriguez-Bano J (2013) Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: a prospective multicentre cohort study in the era of antimicrobial resistance. Clin Microbiol Infect 19(10):962–968.  https://doi.org/10.1111/1469-0691.12089 CrossRefPubMedGoogle Scholar
  11. Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, Lee KT (2003) Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett 196:143–152.  https://doi.org/10.1016/S0304-3835(03)00238-6 CrossRefPubMedGoogle Scholar
  12. Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour Technol 99:8788–8795.  https://doi.org/10.1016/j.biortech.2008.04.048 CrossRefPubMedGoogle Scholar
  13. Lee HS, Ahn YJ (1998) Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. J Agric Food Chem 46:8–12.  https://doi.org/10.1021/jf970548y CrossRefPubMedGoogle Scholar
  14. Mahmoud AM, El-Baky RMA, Ahmed ABF, Gad GFM (2016) Antibacterial activity of essential oils and in combination with some standard antimicrobials against different pathogens isolated from some clinical specimens. Am J Microbiol Res 4(1):16–25.  https://doi.org/10.12691/ajmr-4-1-2 CrossRefGoogle Scholar
  15. Malik T, Singh P (2010) Antimicrobial effects of essential oils against uropathogens with varying sensitivity to antibiotics. Asian J Biol Sci 3(2):92–98CrossRefGoogle Scholar
  16. Miguel MG (2010) Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 15:9252–9287.  https://doi.org/10.3390/molecules15129252 CrossRefPubMedGoogle Scholar
  17. Mith H, Dure R, Delcenserie V, Zhiri A, Daube G, Clinquart A (2014) Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci Nutr 2(4):403–416.  https://doi.org/10.1002/fsn3.116 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Pavela R (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76(7):691–696.  https://doi.org/10.1016/j.fitote.2005.06.001 CrossRefPubMedGoogle Scholar
  19. Ponce AG, Fritz R, Del Valle CE, Roura SI (2003) Antimicrobial activity of essential oils on native microbial population of organic Swiss chard. Lebensm Wiss Technol 36:679–684.  https://doi.org/10.1016/S0023-6438(03)00088-4 CrossRefGoogle Scholar
  20. Puškárová A, Bučková M, Kraková L, Pangallo D, Kozics K (2017) The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci Rep 7:8211.  https://doi.org/10.1038/s41598-017-08673-9 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crop Prod 62:250–264.  https://doi.org/10.1016/j.indcrop.2014.05.055 CrossRefGoogle Scholar
  22. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure EO, Kahlmeter G, Kruse H, Laxminarayan R, Liebana E, Lopez-Cerero E, MacGowan A, Martins M, Rodriguez-Bano J, Rolain JM, Segovia C, Sigauque B, Taconelli E, Wellington E, Vila J (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29.  https://doi.org/10.1016/j.nmni.2015.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Russo A, Formisano C, Rigano D, Cardile V, Apostolides N, Senatore AF (2016) Comparative phytochemical profile and antiproliferative activity on human melanoma cells of essential oils of three Lebanese Salvia species. Ind Crop Prod 83:492–499.  https://doi.org/10.1016/j.indcrop.2015.12.080 CrossRefGoogle Scholar
  24. Sakkas H, Gousia P, Economou V, Sakkas V, Petsios S, Papadopoulou C (2016) In vitro antimicrobial activity of five essential oils on multidrug resistant gram-negative clinical isolates. J Intercult Ethnopharmacol 5(3):212–218.  https://doi.org/10.5455/jice.20160331064446 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sienkiewicz M, Łysakowska M, Denys P, Kowalczyk E (2012) The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microb Drug Resist 18(2):137–148.  https://doi.org/10.1089/mdr.2011.0080 CrossRefPubMedGoogle Scholar
  26. Sydnor ERM, Perl TM (2011) Hospital epidemiology and infection control in acutecare settings. Clin Microbiol Rev 24(1):141–146.  https://doi.org/10.1128/CMR.00027-10 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tsiri D, Graikou K, Pobłocka-Olech L, Krauze-Baranowska M, Spyropoulos C, Chinou I (2009) Chemosystematic value of essential oil compostion of Thuja species cultivated in Poland—antimicrobial activity. Molecules 14:4707–4715.  https://doi.org/10.3390/molecules14114707
  28. Wayne PA (2017) Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100Google Scholar
  29. Wright GD (2014) Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol 60(3):147–154.  https://doi.org/10.1139/cjm-2014-0063 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Molecular Biology, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of Molecular BiologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Genetics, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations