Skip to main content
Log in

Cephalic specializations in relation to a second set of jaws in muraenids

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The Muraenidae, one of the largest clades within the anguilliform fishes, exhibit an innovative feeding mechanism that allows them to transport large prey items from the oral jaw all the way back towards the esophagus, using highly specialised pharyngeal jaws. This study was conducted to show the degree to what trade-offs in muraenids may have arisen in the oral feeding apparatus, in relation to this pharyngeal transport system. Hence, the head musculoskeletal features of Anarchias allardicei (Uropterygiinae: Muraenidae) and Gymnothorax prasinus (Muraeninae: Muraenidae) were compared with that of a closely-related out-group with a hydraulic based prey transport, Ariosoma gilberti (Bathymyrinae: Congridae) by providing a detailed description of the cranial osteology and myology of A. allardicei and G. prasinus. The result showed that this innovative feeding mechanism may be linked to many cephalic modifications such as, stout and robust neurocranial elements, elongated lower jaw as result of the posterior position of the quadrato-mandibular articulation, enlarged teeth of oral jaws and premaxillo-ethmovomeral complex, reduction in the moveable cranial bones and their muscular connections, hypertrophied adductor mandibulae muscle complex, presence of the quadrato-maxillary and preoperculo-angular ligaments, connection of the quadrate to the A2 tendon of the adductor mandibulae complex and caudoventral orientation of the fibers of the large A3 section of the adductor mandibulae complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adriaens D, Verraes W, Taverne L (1997) The cranial lateral-line system in Clarias gariepinus (Burchell, 1822) (Siluroidei: Clariidae): morphology and development of canal related bones. Eur J Morphol 35(3):181–208

    Article  PubMed  CAS  Google Scholar 

  • Bock WJ, Shear RC (1972) A staining method for gross dissection of vertebrate muscles. Anatomischer Anzeiger Bd 130:222–227

    CAS  Google Scholar 

  • Böhlke EB (1989) Methods and terminology. In: Böhlke EB (ed) Fishes of the western North Atlantic. Sears Foundation for Marine Research, New Haven, pp 1–7

    Google Scholar 

  • Böhlke EB, Mccosker JE, Böhlke JE (1989) Family Muranidae - morays. In: Böhlke EB (ed) Fishes of the western North Atlantic. Sears Foundation for Marine Research, New Haven, pp 104–206

    Google Scholar 

  • Castle PHJ (1968) The world of eels. Tuatara: Journal of the Biological Society 16(2):87–97

    Google Scholar 

  • Collar DC, Near TJ, Wainwright PC (2005) Comparative analysis of morphological diversity: does disparity accumulate at the same rate in two lineages of centrarchid fishes? Evolution 59:783–794. https://doi.org/10.1111/j.0014-3820.2005.tb01826.x

    Article  Google Scholar 

  • De Schepper N, Adriaens D, De Kegel B (2005) Moringua edwardsi (Moringuidae: Anguilliformes): cranial specialization for head-first burrowing? J Morphol 226:356–368

    Article  Google Scholar 

  • De Schepper N, De Kegel B, Adriaens D (2007) Pisodonophis boro (Ophichthidae: Anguilliformes): specialization for head-first and tail-first burrowing? J Morphol 268:112–126. https://doi.org/10.1002/jmor.10507

    Article  PubMed  Google Scholar 

  • De Schepper N, Van Wassenbergh S, Adriaens D (2008) Morphology of the jaw system in trichiurids: trade-offs between mouth closing and biting performance. Zool J Linnean Soc 152:717–736. https://doi.org/10.1111/j.1096-3642.2008.00348.x

    Article  Google Scholar 

  • Devaere S, Adriaens D, Verraes W, Teugels GG (2001) Cranial morphology of the anguilliform clariid Channallabes apus (Günther, 1873) (Teleostei: Siluriformes): adaptations related to a powerful biting? Zool J Linnean Soc 255:235–250. https://doi.org/10.1017/S0952836901001303

    Article  Google Scholar 

  • Eagderi S (2010) Structural diversity in the cranial musculoskeletal system in Anguilliformes: an evolutionary-morphological study. PhD thesis. Ghent University, Ghent, Belgium

  • Eagderi S, Adriaens D (2010a) Head morphology of the duckbill eel, Hoplunnis punctata (Nettastomatidae: Anguilliformes): a case of jaw elongation. Zoology 113(3):148–157. https://doi.org/10.1016/j.zool.2009.09.004

    Article  PubMed  Google Scholar 

  • Eagderi S, Adriaens D (2010b) Cephalic morphology of Pythonichthys macrurus (Heterenchelyidae: Anguilliformes): specializations for head-first burrowing. J Morphol 271:1053–1065. https://doi.org/10.1002/jmor.10852

    Article  PubMed  Google Scholar 

  • Eagderi S, Adriaens D (2014) Cephalic morphology of Ariosoma gilberti (Bathymyrinae: Congridae). Iranian Journal of Ichthyology 1(1):39–50

    Google Scholar 

  • Gans C, De Vree F (1987) Functional bases of fiber length and angulation in muscle. J Morphol 192:63–85. https://doi.org/10.1002/jmor.1051920106

    Article  PubMed  CAS  Google Scholar 

  • Gillis GB, Lauder GV (1995) Kinematics of feeding in bluegill sunfish: is there a general distinction between aquatic capture and transport behaviors? J Exp Biol 198:709–720

    PubMed  CAS  Google Scholar 

  • Grubich J, Rice AN, Westneat MW (2008) Functional morphology of bite mechanics in the great barracuda (Sphyraena barracuda). Zoology 111:16–29. https://doi.org/10.1016/j.zool.2007.05.003

    Article  PubMed  Google Scholar 

  • Hanken J, Wassersug R (1981) The visible skeleton. A new double-stain technique reveals the nature of the “hard” tissues. Functional Photography 16:22–26

    Google Scholar 

  • Herrel A, Adriaens D, Verraes W, Aerts P (2002) Bite performance in clariid fishes with hypertrophied jaw adductors as deduced by bite modeling. J Morphol 253:196–205. https://doi.org/10.1002/jmor.1121

    Article  PubMed  Google Scholar 

  • Hildebrand M (1995) Analysis of vertebrate structure. 4th edn. Wiley, New York

    Google Scholar 

  • Johnson GD, Ida H, Sakaue J, Sado T, Asahida T, Miya M (2012) A 'living fossil' eel (Anguilliformes: Protanguillidae, fam. Nov.) from an undersea cave in Palau. Proceedings of the Royal Society B-Biological Sciences 279(1730):934–943

    Article  Google Scholar 

  • Kammerer CF, Grande L, Westneat MW (2005) Comparative and developmental functional morphology of the jaws of living and fossil gars (Actinopterygii: Lepisosteidae). J Morphol 267:1017–1031. https://doi.org/10.1002/jmor.10293

    Article  Google Scholar 

  • Lauder GV (1979) Feeding mechanisms in primitive teleosts and in the halecomorph fish Amia calva. J Zool 187:543–578. https://doi.org/10.1111/j.1469-7998.1979.tb03386.x

    Article  Google Scholar 

  • Lopez JA, Westneat MW, Hanel R (2007) The phylogenetic affinities of the mysterious anguilliform genera Coloconger and Thalassenchelys as supported by mtDNA sequences. Copeia 2007(4):959–966

  • Mehta RS (2009) Ecomorphology of the moray bite: relationship between dietary extremes and morphological diversity. Physiol Biochem Zool 82(1):90–103. https://doi.org/10.1086/594381

    Article  PubMed  Google Scholar 

  • Mehta RS, Wainwright PC (2007a) Raptorial jaws in the throat help moray eels swallow large prey. Nature 449(6):79–82. https://doi.org/10.1038/nature06062

    Article  PubMed  CAS  Google Scholar 

  • Mehta RS, Wainwright PC (2007b) Biting releases constraints on moray eel feeding kinematics. J Exp Biol 210:495–504. https://doi.org/10.1242/jeb.02663

    Article  PubMed  Google Scholar 

  • Mehta R, Wainwright PC (2008) Functional morphology of the pharyngeal jaw apparatus in moray eels. J Morphol 269:604–619. https://doi.org/10.1002/jmor.10612

    Article  PubMed  Google Scholar 

  • Nelson GJ (1966) Gill arches of teleostean fishes of the order Anguilliformes. Pac Sci 20(4):391–408

    Google Scholar 

  • Nelson JS, Grande TC, Mark VH, Wilson MVH (2016) Fishes of the world. 4th edn. Wiley, INC

  • Norton SF, Brainerd EL (1993) Convergence in the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae. J Exp Biol 176:11–29

    Google Scholar 

  • Obermiller LE, Pfeiler E (2003) Phylogenetic relationships of elopomorph fishes inferred from mitochondrial ribosomal DNA sequences. Mol Phylogenet Evol 26:202–214

    Article  PubMed  CAS  Google Scholar 

  • Patterson C (1975) The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philosophical Transactions of the Royal Society B: Biological Sciences 269:275–579

  • Porter HT, Motta PJ (2004) A comparison of strike and prey capture kinematics of three species of piscivorous fishes: Florida gar (Lepisosteus platyrhinchus), redfin needlefish (Strongylura notata), and great barracuda (Sphyraena barracuda). Mar Biol 145:989–1000

    Article  Google Scholar 

  • Rojo AL (1991) Dictionary of evolutionary of fish osteology. CRC Press, Florida

    Google Scholar 

  • Santos FB, Castro RMC (2003) Activity, habitat utilization, feeding behavior, and diet of the sand moray Gymnothorax ocellatus (Anguilliformes, Muraenidae) in the south western Atlantic. Biota Neatropica 3:1–7

    Article  Google Scholar 

  • Schaeffer B, Rosen DE (1961) Major adaptive levels in the evolution of the Actinopterygian feeding mechanism. Am Zool 1(2):187–204

    Article  Google Scholar 

  • Smith DG, Nielsen JG (1989) Family nemichthyidae. In: Böhlke EB (ed) Fishes of the western North Atlantic. Sears Foundation for Marine Research, New Haven, pp 411–459

    Google Scholar 

  • Tighe KA (1989) Family Serrivomeridae. In: Böhlke EB (ed) Fishes of the western North Atlantic. Sears Foundation for Marine Research, New Haven, pp 613–627

    Google Scholar 

  • Turingan RG, Wainwright PC, Hensley DA (1995) Interpopulation variation in prey use and feeding biomechanics in Caribean triggerfishes. Oecologia 102:296–304

    Article  PubMed  Google Scholar 

  • Van Wassenbergh S, Aerts P, Adriaens D, Herrel A (2005) A dynamical model of mouth closing movements in clariid catfishes: the role of enlarged jaw adductors. J Theor Biol 234:49–65. https://doi.org/10.1016/j.jtbi.2004.11.007

    Article  PubMed  Google Scholar 

  • Van Wassenbergh S, Herrel A, Adriaens D, Aerts P (2004) Effects of jaw adductor hypertrophy on buccal expansions during feeding of air breathing catfishes (Teleostei, Clariidae). Zoomorphology 123:81–93. https://doi.org/10.1007/s00435-003-0090-3

    Article  Google Scholar 

  • Wang CH, Kuo CH, Mok HK, Lee SC (2003) Molecular phylogeny of elopomorph fishes inferred from mitochondrial 12S ribosomal RNA sequences. Zool Scr 32:231–241. https://doi.org/10.1046/j.1463-6409.2003.00114.x

    Article  Google Scholar 

  • Westneat MW (1994) Transmission of force and velocity in the feeding mechanisms of labrid fishes (Teleostei, Perciformes). Zoomorphology 114:103–118

    Article  Google Scholar 

  • Westneat MW (2004) Evolution of levers and linkages in the feeding mechanisms of fishes. Integr Comp Biol 44(5):378–389. https://doi.org/10.1093/icb/44.5.378

    Article  PubMed  Google Scholar 

  • Westneat MW (2007) Twice bitten. Nature 449:33–34. https://doi.org/10.1038/449033b

    Article  PubMed  CAS  Google Scholar 

  • Winterbottom R (1974) A descriptive synonymy of the striated muscles of the Teleostei. Proc Acad Natl Sci Phila 125:225–317

    Google Scholar 

  • Young RF, Winn HE (2003) Activity patterns, diet, and shelter site use for two species of moray eels, Gymnothorax moringa and Gymnothorax vicinus, in Belize. Copeia 2003(1):44–55

  • Yukihira H, Shibuno T, Hashimoto H, Gushima K (1994) Feeding habits of moray eels (Pisces: Muraenidae) at Kuchierabujima. Journal of the Faculty of Applied Biological Science - Hiroshima University (Japan) 33:159–166

    Google Scholar 

Download references

Acknowledgments

The authors would like to thanks University of Tehran and Ghent University for financial support, M. McGrouther (Australian Museum) for providing museum specimens, and D.G. Smith (Smithsonian, USA) for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Eagderi.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eagderi, S., Adiaens, D. Cephalic specializations in relation to a second set of jaws in muraenids. Biologia 73, 773–786 (2018). https://doi.org/10.2478/s11756-018-0088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-018-0088-4

Keywords

Navigation