Skip to main content

Habitat conditions, stage structure and vegetation associations of geographically isolated subalpine populations of Salix lapponum L. (Salicaceae) in the Krkonoše Mts (Czech Republic)

Abstract

Shrub communities are important components of the subalpine vegetation. We focused on habitat conditions and stage structure (flowering and non-reproducing individuals) of stands of the endangered Salix lapponum in the Krkonoše Mts, Czech Republic. Habitat conditions were determined using soil sample analyses and Ellenberg indicator values (EIVs) derived from fine-scale (1 × 1 m) vegetation plots. The fine-scale plots were compared with coarse-scale relevés with the occurrence of S. lapponum acquired from the Czech National Phytosociological Database. We found that S. lapponum grows on nutrient-poor, acidic soils with high relative water contents, high amounts of total nitrogen, low amounts of phosphorus, moderate amounts of magnesium and low to moderate amounts of calcium. The overall proportion of non-reproducing individuals was 35.2%, but strong variations were observed among populations (0–100%). Co-occurring species and EIVs data indicated that flowering individuals are relatively more common in humid, nutrient-rich and warmer microhabitats than non-reproducing ones. Well-developed (“typical”) stands of S. lapponum with a dominance of flowering individuals occur along alpine springs, streams and in glacial cirques (= association Salicetum lapponum Zlatník 1928), but S. lapponum also grows along transitional mires and peat bogs and in subalpine grasslands. Coarse-scale relevés were similar to “typical” stands of S. lapponum at the fine scale but were differentiated from them by high frequencies of several, mainly broad-leaved forbs and herbs typical of moist to wet and fertile soils. Threats to S. lapponum and the future prospects of its stands in the Krkonoše Mts are briefly discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alliende MC, Harper JL (1989) Demographic studies of a dioecious tree. I. Colonization, sex and age structure of a population of Salix cinerea. J Ecol 77:1029–1047. https://doi.org/10.2307/2260821

    Article  Google Scholar 

  2. Anthelme F, Michalet R, Barbaro L, Brun JJ (2003) Environmental and spatial influences of shrub cover (Alnus viridis DC.) on vegetation diversity at the upper treeline in the inner western Alps. Arct Antarct Alp Res 35:48–55. https://doi.org/10.1657/1523-0430(2003)035[0048:EASIOS]2.0.CO;2

  3. Braun-Blanquet J (1964) Pflanzensoziologie: Grundzüge der Vegetationskunde. Springer, New York

    Book  Google Scholar 

  4. Chaloupský J (ed) (1989) Geologie Krkonoš a Jizerských hor. Ústřední ústav geologický, Praha, 288 pp

    Google Scholar 

  5. Chlebicki A (1999) Grzyby zebrane na gnidoszu sudeckim (Pedicularis sudetica ssp. sudetica), skalnicy snieznej (Saxifraga nivalis) i wierzbie laponskiej (Salix lapponum) w Karkonoszach. Przyroda Sudet Zachodnich 2:15–20

    Google Scholar 

  6. Chmelař J (1972) Poznámky k československým druhům rodu Salix. Část II. Druhy vrb vyšších poloh. Čas Slez Muz, ser. C 11:1–16

    Google Scholar 

  7. Chmelař J, Koblížek J (1990) Salicaceae Mirbel – vrbovité. In: Hejný S, Slavík B (eds) Květena České republiky 2. Academia, Praha, pp 458–495

    Google Scholar 

  8. Chmelař J, Meusel W (1979) Die Weiden Europas. Die Neue Brehm-Bücherei, Wittenberg Lutherstadt

    Google Scholar 

  9. Chytrý M, Rafajová M (2003) Czech National Phytosociological Database: basic statistics of the available vegetation plot-data. Preslia 75:1–15

    Google Scholar 

  10. Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90. https://doi.org/10.1111/j.1654-1103.2002.tb02025.x

    Article  Google Scholar 

  11. Dahl E (1956) Rondane: mountain vegetation in South Norway and its relation to the environment. Aschehough, Oslo

    Google Scholar 

  12. Danton P, Baffray M (1995) Inventaire des plantes protégées en France. Nathan, Paris

    Google Scholar 

  13. de Foucault B (2012) Contribution au prodrome des végétations de France: les Betulo carpaticae – Alnetea viridis Rejmánek in Huml, Lepš, Prach & Rejmánek 1979. J Bot Soc Bot France 60:47–68

    Google Scholar 

  14. de Witte LC, Armbruster GFJ, Gielly L, Taberlet P, Stöcklin J (2012) AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Mol Ecol 21:1081–1109. https://doi.org/10.1111/j.1365-294X.2011.05326.x

    Article  PubMed  Google Scholar 

  15. Dengler J (2003) Entwicklung und Bewertung neuer Ansätze in der Pflanzensoziologie unter besonderer Berücksichtigung der Vegetationsklassifikation. Arch Naturwiss Diss 14. Galunder, Nümbrecht, 297 pp.

  16. Dierßen K (1996) Vegetation Nordeuropas. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  17. Dona AJ, Galen C (2007) Nurse effects of alpine willows (Salix) enhance over-winter survival at the upper range limit of fireweed, Chamerion angustifolium. Arct Antarct Alp Res 39:57–64. https://doi.org/10.1657/1523-0430(2007)39[57:NEOAWS]2.0.CO;2

  18. Ellenberg H, Weber HE, Düll R, Wirth W, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze, Göttingen

    Google Scholar 

  19. Elven R, Karlsson T (2000) Salicaceae Mirbel. In: Jonsell B (ed) Flora Nordica 1. Bergius Foundation, Stockholm, pp 118–195

    Google Scholar 

  20. Fijałkowski D (1958) Badania nad rozmieszczeniem i ekologią wierzby lapońskiej (Salix lapponum) na Pojezierzu Łęczyńsko-Włodawskim. Fragm Florist Geobot Pol 3:89–103

    Google Scholar 

  21. Grabowski H (1843) Flora von Ober-Schlesien und dem Gesenke: Mit Berücksichtigung der geognostischen, Boden- und Höhen-Verhältnisse. Gosohorsky, Breslau

    Google Scholar 

  22. Grulich V (2012) Red list of vascular plants of the Czech Republic: 3rd edition. Preslia 84:631–645

    Google Scholar 

  23. Hadač E, Váňa J (1967) Plant communities of mires in the western part of the Krkonoše Mountains, Czechoslovakia. Folia Geobot Phytotax 2:213–254. https://doi.org/10.1007/BF02854617

    Article  Google Scholar 

  24. Hájek M, Hájková P (2011) Scheuchzerio palustris-Caricetea nigrae Tüxen 1937. In: Chytrý M (ed) Vegetace České republiky 3. Academia, Praha, pp 615–619

    Google Scholar 

  25. Hédl R (2007) Is sampling subjectivity a distorting factor in surveys for vegetation diversity? Folia Geobot 42:191–198. https://doi.org/10.1007/BF02893885

    Article  Google Scholar 

  26. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591. https://doi.org/10.2307/3237010

    Article  Google Scholar 

  27. Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg's indicator values for British plants. ECOFACT volume 2 technical annex. Institute of Terrestrial Ecology, Huntingdon

    Google Scholar 

  28. Hintze J (2013) NCSS 9. NCSS, LLC. Kaysville, Utah. www.ncss.com

  29. Holtmeier F, Broll G (1992) The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra eco-tone on Niwot ridge, Colorado front range, U.S.A. Arct Alp Res 24:216–228. https://doi.org/10.2307/1551660

    Article  Google Scholar 

  30. Hroneš M, Trávníček B (2018): Typification of names related to Salix lapponum (Salicaceae) and its hybrids published by I. F. Tausch. Nord J Bot 36: njb-01457. https://doi.org/10.1111/njb.01457

  31. Hroneš M, Nývltová V, Brandová B, Ševčík J, Dančák M, Vašut RJ (2014) Vysokohorské vrby (Salix) sudetských pohoří České republiky - rozšíření a současný stav populací. Zpr Čes Bot Spol 49:29–47

    Google Scholar 

  32. Huml O, Lepš J, Prach K, Rejmánek M (1979) Zur Kenntnis der Quellfluren, alpinen Hochstaudenfluren und Gebüsche des Făgăraş-Gebirges in den Südkarpaten. Preslia 51:35–45

    Google Scholar 

  33. Kliment J, Šibík J, Šibíková I, Jarolímek I, Dúbravcová Z, Uhlířová J (2010) High-altitude vegetation of the Western Carpathians — a syntaxonomical review. Biologia 5:965–989. https://doi.org/10.2478/s11756-010-0109-4

    Article  Google Scholar 

  34. Kočí M (2010) Subalpine tall-forb and deciduous-shrub vegetation. In: Chytrý M (ed) Vegetace České republiky 1. Academia, Praha, pp 91–131

    Google Scholar 

  35. Kołos A, Chmielewska-Nowik E (2007) Struktura populacji Salix lapponum (Salicaceae) na izolowanych stanowiskach w Puszczy Knyszyńskiej i Puszczy Białowieskiej. Fragm Florist Geobot Pol 14:123–137

    Google Scholar 

  36. Kołos A, Wołkowycki D, Banaszuk P, Kamocki A (2015) Protection of relic plant species at the limit of their geographical range: response of Salix lapponum to competitor removal. Ann Bot Fenn 52:303–314. https://doi.org/10.5735/085.052.0505

    Article  Google Scholar 

  37. Macko S (1952) Zespoły roślinne w Karkonoszach. Część I. Karkonosze wschodnie. Acta Soc Bot Pol 21:591–684

    Article  Google Scholar 

  38. Mardon DK (1990) Conservation of montane willow scrub in Scotland. Trans Bot R Soc Edinburgh 45:427–436

    Article  Google Scholar 

  39. Matějka K, Vacek S, Podrázský S (2010) Development of forest soils in the Krkonoše Mts. In the period 1980–2009. J For Sci 56:485–504

    Article  Google Scholar 

  40. Matuszkiewicz W, Matuszkiewicz A (1975) Mapa zbiorowisk roślinnych Karkonoskiego Parku Narodowego. Ochr Przyr 40:45–112

    Google Scholar 

  41. McVean DN, Ratcliffe DA (1962) Plant communities of the Scottish highlands. A study of Scottish mountain, moorland and forest vegetation. Monographs of the nature conservancy 1. H.M. Stationery Office, London

    Google Scholar 

  42. Mehlich A (1978) New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc. Commun Soil Sci Plan 9:477–492. https://doi.org/10.1080/00103627809366824

    Article  CAS  Google Scholar 

  43. Mirek Z, Zarzycki K, Wojewoda W, Szeląg Z (2006) Czerwona lista roślin i grzybów Polski. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow

    Google Scholar 

  44. Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T et al (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19:3–264. https://doi.org/10.1111/avsc.12257

    Article  Google Scholar 

  45. Müllerová J, Vítková M, Vítek O (2011) The impacts of road and walking trails upon adjacent vegetation: effects of road building materials on species composition in a nutrient poor environment. Sci Tot Env 409:3839–3849. https://doi.org/10.1016/j.scitotenv.2011.06.056

    Article  CAS  Google Scholar 

  46. Naito Y, Konuma A, Iwata H, Suyama Y, Seiwa K, Okuda T, Lee SL, Muhammad N, Tsumura Y (2005) Selfing and inbreeding depression in seeds and seedlings of Neobalanocarpus heimii (Dipterocarpaceae). J Plant Res 118:423–430. https://doi.org/10.1007/s10265-005-0245-z

    Article  PubMed  Google Scholar 

  47. Otýpková Z, Chytrý M (2006) Effects of plot size on the ordination of vegetation samples. J Veg Sci 17:465–472. https://doi.org/10.1111/j.1654-1103.2006.tb02467.x

    Article  Google Scholar 

  48. Pogorzelec M (2003) Charakterystyka populacji i stanowisk Salix lapponum L. w Poleskim Parku Narodowym. Acta Agrophysica 1:145–151

    Google Scholar 

  49. Pogorzelec M (2008) Influence of chosen environmental abiotic factors on Salix lapponum L. populations in Polesie Lubelskie region. Pol J Env Stud 17:581–586

    CAS  Google Scholar 

  50. Pogorzelec M (2009) Downy willow (Salix lapponum L.) as a component of different phytocoenoses in Polesie National Park. Acta Agrobot 62:107–116. https://doi.org/10.5586/aa.2009.013

    Article  Google Scholar 

  51. Pogorzelec M (2010) Salix lapponum L. (downy willow) in stands under anthropopressure in the Łęczna-Włodawa Lakeland. Acta Agrobot 63:47–53. https://doi.org/10.5586/aa.2010.006

    Article  Google Scholar 

  52. Pogorzelec M, Bronowicka-Mielniczuk U, Banach B, Szcurowska A, Serafin A (2014a) Relict boreal willows (Salix lapponum and Salix myrtilloides) as an element of phytocoenoses overgrowing the water bodies in Eastern Poland. Appl Ecol Env Res 12:441–456

    Article  Google Scholar 

  53. Pogorzelec M, Głębocka K, Hawrylak-Nowak B, Parzymies M (2014b) Reproduction and diversity of the endangered Salix lapponum L. populations in Eastern Poland. Turk J Bot 38:1239–1247. https://doi.org/10.3906/bot-1405-113

    Article  Google Scholar 

  54. Pokorná H (1978) Studie vlivu matečných hornin na rostlinstvo Krkonoš. Opera Concortica 15:50–85

    Google Scholar 

  55. Pornon A, Escaravage N, Thomas P, Taberlet P (2000) Dynamics of genotypic structure in clonal Rhododendron ferrugineum (Ericaceae) populations. Mol Ecol 9:1099–1111. https://doi.org/10.1046/j.1365-294x.2000.00976.x

    Article  PubMed  CAS  Google Scholar 

  56. Pusz W, Urbaniak J (2017) Foliar diseases of willows (Salix spp.) in selected locations of the Karkonosze Mts (the Giant Mts). Eur J Plant Pathol 148:45–51

    Article  Google Scholar 

  57. Rodwell JS (1991) British plant communities: volume 1, woodlands and scrub. Cambridge University Press, Cambridge

    Google Scholar 

  58. Roleček J, Tichý L, Zelený D, Chytrý M (2009) Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. J Veg Sci 20:596–602. https://doi.org/10.1111/j.1654-1103.2009.01062.x

    Article  Google Scholar 

  59. Scott ML, Friedmann JM, Auble GT (1996) fluvial process and the establishment of bottomland trees. Geomorphology 14:327–339. https://doi.org/10.1016/0169-555X(95)00046-8

    Article  Google Scholar 

  60. Scottish Montane Willow Research Group (2005) Biodiversity: taxonomy, genetics and ecology of sub-arctic willow scrub. Royal Botanic Garden, Edinburgh

    Google Scholar 

  61. Semelová V, Hejcman M, Pavlů V, Vacek S, Podrázský V (2008) The grass garden in the Giant Mts (Czech Republic): residual effect of long-term fertilization after 62 years. Agric Ecosyst Environ 123:337–342. https://doi.org/10.1016/j.agee.2007.07.005

    Article  Google Scholar 

  62. Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436

    Article  Google Scholar 

  63. Shaw RF, Iason GR, Pakeman RJ, Young MR (2010) Regeneration of Salix arbuscula and Salix lapponum within a large mammal exclosure: the impacts of microsite and herbivory. Restor Ecol 18:1–9. https://doi.org/10.1111/j.1526-100X.2010.00720.x

    Article  Google Scholar 

  64. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5. Cambridge University Press, 362 pp

  65. Speed JDM, Austrheim G, Hester AJ, Mysterud A (2013) The response of alpine Salix shrubs to long-term browsing varies with elevation and herbivore density. Arct Antarct Alp Res 45:584–593. https://doi.org/10.1657/1938-4246-45.4.584

    Article  Google Scholar 

  66. Stamati K, Hollingsworth PM, Russell K (2007) Patterns of clonal diversity in three species of sub-arctic willow (Salix lanata, Salix lapponum and Salix herbacea). Plant Sys Evol 269:75–88. https://doi.org/10.1007/s00606-007-0578-2

    Article  Google Scholar 

  67. Takkis K, Pärtel M, Saal L, Helm A (2013) Extinction debt in a common grassland species: immediate and delayed responses of plant and population fitness. Plant Ecol 214:953–963. https://doi.org/10.1007/s11258-013-0221-y

    Article  Google Scholar 

  68. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x

    Article  Google Scholar 

  69. Totland Ø, Esaete J (2002) Effects of willow canopies on plant species performance in a low-alpine community. Plant Ecol 161:157–166. https://doi.org/10.1023/A:1020345632498

    Article  Google Scholar 

  70. Urban D, Wawer M (2001) Salix lapponum L. i S. myrtilloides L. w okolicach Sobiboru na Pojezierzu Łęczyńsko-Włodawskim. Ann UMCS 56:83–93

    Google Scholar 

  71. Wesche K, Ronnenberg K, Hensen I (2005) Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. J Arid Environ 63:390–405. https://doi.org/10.1016/j.jaridenv.2005.03.014

    Article  Google Scholar 

  72. Zarzycki K, Korzeniak U (2002) Ecological indicator values of vascular plants of Poland. Institut Botaniki PAN, Kraków

    Google Scholar 

  73. Zeidler M, Duchoslav M, Banaš M, Lešková M (2012) Impacts of introduced dwarf pine (Pinus mugo) on the diversity and composition of alpine vegetation. Community Ecol 13:213–220

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to workers of the Krkonoše National Park administration, namely J. Zahradníková and D. Gluzová, for help with obtaining research permit and field work, respectively. L. Čáp helped with nitrogen analysis. I. Knollová and M. Chytrý (Brno) kindly provided access to the Czech national phytosociological database. Comments and corrections of two anonymous reviewers are greatly acknowledged. Field work was carried out under research permits no 8/2010, 112/2012 and 113/2012. MH, SHM, ZH & MD were supported by the project no. IGA PrF-2018-001 from the Internal Grant Agency of the Palacký University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michal Hroneš.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hroneš, M., Hrachová Macurová, S., Hradílek, Z. et al. Habitat conditions, stage structure and vegetation associations of geographically isolated subalpine populations of Salix lapponum L. (Salicaceae) in the Krkonoše Mts (Czech Republic). Biologia 73, 319–332 (2018). https://doi.org/10.2478/s11756-018-0051-4

Download citation

Keywords

  • Alpine scrub
  • Krkonoše Mts
  • Flowering frequency
  • Habitat conditions
  • Soil conditions
  • Vegetation composition
  • Willow