Advertisement

Biologia

, Volume 73, Issue 2, pp 175–184 | Cite as

Potential distribution under different climatic scenarios of climate change of the vulnerable Caucasian salamander (Mertensiella caucasica): A case study of the Caucasus Hotspot

  • Serkan Gül
  • Yusuf Kumlutaş
  • Çetin Ilgaz
Original Article

Abstract

Amphibians are strongly affected by climate change like many vertebrate animals. To address this problematic situation, we examined the potential effect of climate change on the distribution of Mertensiella caucasica (Waga, 1876) that is the best known species in Caucasus hotspot using future distribution modelling (average for 2041–2060 and 2061–2080) under RCP 4.5 and RCP 8.5 emission scenarios. According to our model, the future distribution showed a remarkable expansion towards the northwest part of the Greater Caucasus whereas it indicated a regression from the West of the western Lesser Caucasus up to the Greater Caucasus. Our results indicated that most habitat loss seems to occur in the West Lesser Caucasus including the northeast of Turkey and the East Lesser Caucasus. Moreover, habitat suitability for M. caucasica showed trends towards local extinction in the future. In the Caucasus hotspot, the expected distribution range of M. caucasica will decrease with the risk of local extinction. Therefore, we recommend that its status in IUCN Red List should be reconsidered again.

Keywords

Amphibians Biodiversity Caucasus Conservation Ecological niche modelling 

Notes

Acknowledgments

This work was supported by Research Fund of the Recep Tayyip Erdoğan University [grant number FKG-2016-528]. We would like to thank the anonymous referee’s constructive comments.

Supplementary material

11756_2018_20_MOESM1_ESM.pdf (80 kb)
ESM 1 (PDF 79.9 kb)

References

  1. Abolafya M, Onmus O, Şekercioğlu CH, Bilgin R (2013) Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios. PLoS One 8:e68037.  https://doi.org/10.1371/journal.pone.0068037 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Araujo MB, Thuiller W, Pearson R (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728.  https://doi.org/10.1111/j.1365-2699.2006.01482.x CrossRefGoogle Scholar
  3. Atatür MK, Budak A (1982) The present status of Mertensiella caucasica (Waga 1876) (Urodela: Salamandridae) in northeastern Anatolia. Amphibia-Reptilia 4:295–301.  https://doi.org/10.1163/156853882X00013 CrossRefGoogle Scholar
  4. Baran İ, Tosunoğlu M, Kaya U, Kumlutaş Y (1997) Çamlıhemşin Rize civarının herpetofaunası hakkında. Turk J Zool 21:409–416Google Scholar
  5. Başoğlu M, Özeti N, Yılmaz İ (1994) Türkiye Amfibileri. Ege Univiversity Faculty of Science Book Series. İzmir, TurkeyGoogle Scholar
  6. Berthold AA (1846) Über das Vorkommen von Tritonen am Kaukasus mit. Nachrichten von der Georg-Augusts-Universität und der Königl. Gesellschaft der Wissenschaften zu Göttingen 1846:188–190Google Scholar
  7. Beyer HL (2012) Geospatial Modelling Environment (Version 0.7.2.0). (software). URL: http://www.spatialecology.com/gme
  8. Bickford D, Howard SD, DJJ N, Sheridan JA (2010) Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers Conserv 19:1043–1062.  https://doi.org/10.1007/s10531-010-9782-4 CrossRefGoogle Scholar
  9. Blaustein AR, Belden LK, Olson DH, Green DM, Root TL, Kiesecker JM (2001) Amphibian breeding and climate change. Conserv Biol 15:1804–1809.  https://doi.org/10.1046/j.1523-1739.2001.00307.x CrossRefGoogle Scholar
  10. Blaustein AR, Kiesecker JM (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608.  https://doi.org/10.1046/j.1461-0248.2002.00352.x CrossRefGoogle Scholar
  11. Blaustein AR, Walls SC, Bancroft BA, Lawler JJ, Searle CL, Gervasi SS (2010) Direct and indirect effects of climate change on amphibian populations. Diversity 2:281–313.  https://doi.org/10.3390/d2020281 CrossRefGoogle Scholar
  12. Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biodivers Conserv 125:271–285.  https://doi.org/10.1016/j.biocon.2005.04.009 Google Scholar
  13. Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, Yeong Ryu H, Sbeglia GC, Spagnolo F, Waldron JB, Warsi O et al (2013) How does climate change cause extinction? Proc R Soc B Biol Sci 280:20121890.  https://doi.org/10.1098/rspb.2012.1890 CrossRefGoogle Scholar
  14. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S et al (2011) Development and evaluation of an Earth-system model HadGEM2. GMD 4:997–1062.  https://doi.org/10.5194/gmd-4-1051-2011 Google Scholar
  15. Corn PS (2005) Climate change and amphibians. Anim Biodivers Conserv 28:59–67Google Scholar
  16. Darevsky I, Vedmederja V (1977) A new species of rock lizard Lacerta saxicola EVERSMANN group from northeastern Turkey and adjoining regions of Adjaria [in Russian]. Trudy Zool Inst Akad Nauk SSSR 74:50–54Google Scholar
  17. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672.  https://doi.org/10.1073/pnas.0709472105 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697.  https://doi.org/10.1146/annurev.ecolsys.110308.120159 CrossRefGoogle Scholar
  19. Foden WB, Midgley GF, Hughes G, Bond WJ, Thuiller W, Hoffman MT, Kaleme P, Underhill LG, Rebelo A, Hannah L (2007) A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Divers Distrib 13:645–653.  https://doi.org/10.1111/j.1472-4642.2007.00391.x CrossRefGoogle Scholar
  20. Foden WB, Butchart SHM, Stuart SN, Vié JC, Akçakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L et al (2013) Identifying the world's most climate change vulnerable species: a trait-based assessment of birds, amphibians and corals. PLoS One 8:e65427.  https://doi.org/10.1371/journal.pone.0065427 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Franzen M (1999) Verbreitung und Ökologie von Pelodytes caucasicus Boulenger, 1896 in der Türkei (Distribution and ecology of Pelodytes caucasicus Boulenger, 1896 in Turkey). Salamandra 35:1–18Google Scholar
  22. Garcia RA, Cabeza M, Rahbek C, Araújo MB (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579.  https://doi.org/10.1126/science.1247579 CrossRefPubMedGoogle Scholar
  23. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186.  https://doi.org/10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  24. Guisan A, Hofer U (2003) Predicting reptile distributions at the mesoscale: Relation to climate and topography. J Biogeogr 30:1233–1243.  https://doi.org/10.1046/j.1365-2699.2003.00914.x CrossRefGoogle Scholar
  25. Harris RMB, Grose MR, Lee G, Bindoff NL, Porfirio LL et al (2014) Climate projections for ecologists. WIRES Clim Change 5:621–637.  https://doi.org/10.1002/wcc.291 CrossRefGoogle Scholar
  26. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linnean Soc 68:87–112.  https://doi.org/10.1111/j.1095-8312.1999.tb01160.x CrossRefGoogle Scholar
  27. Hof C, Araújo MB, Jetz W, Rahbek C (2011) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480:516–519.  https://doi.org/10.1038/nature10650 CrossRefPubMedGoogle Scholar
  28. Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SHM, Carpenter KE, Chanson J, Collen B, Cox NA et al (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509.  https://doi.org/10.1126/science.1194442 CrossRefPubMedGoogle Scholar
  29. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 4:479–485.  https://doi.org/10.1038/nature09670 CrossRefGoogle Scholar
  30. Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315.  https://doi.org/10.1016/0169-5347(90)90088-U CrossRefPubMedGoogle Scholar
  31. International C (2014) Biodiversity hotspots (collection) from http://www.cepf.net/resources/hotspots/Europe-and-Central-Asia/Pages/Caucasus.aspx
  32. IPCC Climate change (2013) the physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  33. Keith DA, Mahony M, Hines H, Elith J, Regan TJ, Baumgartner JB, Hunter D, Heard GW, Mitchell NJ, Parris KM et al (2014) Detecting extinction risk from climate change by IUCN Red List criteria. Conserv Biol 28:810–819.  https://doi.org/10.1111/cobi.12234 CrossRefPubMedGoogle Scholar
  34. Lantz LA, Cyrén O (1913) Eine neue varietät der felseneidechse Lacerta saxicola Eversmann parvula nov. var. Bull Mus Caucasus 7:163–168Google Scholar
  35. Lawler JJ, Shafer SL, Bancroft BA, Blaustein AR (2010) Projected climate impacts for the amphibians of the Western Hemisphere. Conserv Biol 24:38–50.  https://doi.org/10.1111/j.1523-1739.2009.01403.x CrossRefPubMedGoogle Scholar
  36. Lewis OT (2006) Climate change, species–area curves and the extinction crisis. Philos Trans R Soc B 361:163–171.  https://doi.org/10.1098/rstb.2005.1712 CrossRefGoogle Scholar
  37. Li Y, Cohen JM, Rohr JR (2013) Review and synthesis of the effects of climate change on amphibians. Integr Zool 8:145–161.  https://doi.org/10.1111/1749-4877.12001 CrossRefPubMedGoogle Scholar
  38. Mackey BG, Lindenmayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28:1147–1166.  https://doi.org/10.1046/j.1365-2699.2001.00626.x CrossRefGoogle Scholar
  39. Méhely L (1909) Materialien zu einer Systematik und Phylogenie der muralis-ähnlichen Lacerten. Ann Hist Nat Mus Nat Hung 7(2):409–621Google Scholar
  40. Mittermeier RA, Robles GP, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (2004) Hotspots revisited: Earth’s biologically richest and most endangered ecoregions. Mexico City, CEMEXGoogle Scholar
  41. Olson DM, Dinerstein E (2002) The Global 200: Priority ecoregions for global conservation. Ann Missouri Bot Gard 89:199–224.  https://doi.org/10.2307/3298564 CrossRefGoogle Scholar
  42. O'Regan SM, Palen WJ, Anderson SC (2014) Climate warming mediates negative impacts of rapid pond drying for three amphibian species. Ecology 95:845–855.  https://doi.org/10.1890/13-0916.1 CrossRefPubMedGoogle Scholar
  43. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117.  https://doi.org/10.1111/j.1365-2699.2006.01594.x CrossRefGoogle Scholar
  44. Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, Fordham DA, Raxworthy CJ, Ryu HY, McNees J et al (2014) Life history and spatial traits predict extinction risk due to climate change. Nat Clim Chang 4:217–221.  https://doi.org/10.1038/nclimate2113 CrossRefGoogle Scholar
  45. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  46. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.  https://doi.org/10.1038/nature01286 CrossRefPubMedGoogle Scholar
  47. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  48. Pilliod DS, Arkle RS, Robertson RM, Murphy MA, Funk WC (2015) Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape. Ecol Evol 5:3979–3994.  https://doi.org/10.1002/ece3.1634 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting, and evaluation. J Biogeogr 41:629–643.  https://doi.org/10.1111/jbi.12227 CrossRefGoogle Scholar
  50. Reading JC (2007) Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 151:125–131.  https://doi.org/10.1007/s00442-006-0558-1 CrossRefPubMedGoogle Scholar
  51. Reinhard S, Renner S, Kupfer A (2015) Sexual dimorphism and age of Mediterranean salamanders. Zoology 118:19–26.  https://doi.org/10.1016/j.zool.2014.08.002 CrossRefPubMedGoogle Scholar
  52. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57.  https://doi.org/10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  53. Rödder D, Hawlitscheck O, Glaw F (2010) Environmental niche plasticity of Phelsuma parkeri from Pemba Island, Tanzania: implications for conservation. Trop Zool 23:35–49Google Scholar
  54. Sayım F, Başkale E, Tarkhnishvili D, Kaya U (2009) Some water chemistry parameters of breeding habitats of Caucasian salamander, Mertensiella caucasica in the Western Lesser Caucasus. C R Biol 332:464–469.  https://doi.org/10.1016/j.crvi.2009.01.001 CrossRefPubMedGoogle Scholar
  55. Seddon JM, Santuci F, Reeve N, Hewitt GM (2002) Caucasus Mountains divide postulated postglacial colonization routes in the white-breasted hedgehog, Erinaceus concolor. J Evol Biol 15:463–467.  https://doi.org/10.1046/j.1420-9101.2002.00408.x CrossRefGoogle Scholar
  56. Sillero N (2011) What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol Model 222:1343–1346.  https://doi.org/10.1016/j.ecolmodel.2011.01.018 CrossRefGoogle Scholar
  57. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786.  https://doi.org/10.1126/science.1103538 CrossRefPubMedGoogle Scholar
  58. Sutton WB, Barrett K, Moody AT, Loftin CS, deMaynadier PG, Nanjappa P (2015) Predicted changes in climatic niche and climate refugia of conservation priority salamander species in the northeastern United States. Forests 6:1–26.  https://doi.org/10.3390/f6010001 CrossRefGoogle Scholar
  59. Tarkhnishvili DN, Serbinova IA (1993) The ecology of the Caucasian salamander in a local population. Asian Herpetol Res 5:147–185Google Scholar
  60. Tarkhnishvili D (1994) Interdependences between populational, developmental and morphological features of the Caucasian salamander, Mertensiella caucasica. Mertensiella 4:315–325Google Scholar
  61. Tarkhnishvili D (1996) The distribution and ecology of the amphibians of Georgia and the Caucasus: a biogeographical analysis. Z Feldherpetol 3:167–196Google Scholar
  62. Tarkhnishvili DN, Serbinova IA (1997) Normal development of the Caucasian salamander (Mertensiella caucasica). Adv Amph Res Former Soviet Union 2:13–30Google Scholar
  63. Tarkhnishvili D, Gokhelashvili R (1999) The amphibians of the Caucasus. Pensoft Publications, Sofia, MoscowGoogle Scholar
  64. Tarkhnishvili D, Thorpe RS, Arntzen JW (2000) Pre-Pleistocene refugia and differentiation between populations of the Caucasian salamander (Mertensiella caucasica). Mol Phylogenet Evol 14:414–422.  https://doi.org/10.1006/mpev.1999.0718 CrossRefPubMedGoogle Scholar
  65. Tarkhnishvili D, Kaya U, Gavashelishvili A, Serbinova I (2008) Ecological divergence between two evolutionary lineages of the Caucasian salamander: Evidence from the GIS analysis. Herpetol J 18:155–163Google Scholar
  66. Tarkhnishvili D, Kaya U (2009) Status and conservation of the Caucasian salamander (Mertensiella caucasica). In: Status and protection of globally threatened species in the Caucasus. In: Zazanashvili N, Mallon D (eds) CEPF, WWF. Tbilisi, Georgia, p 232Google Scholar
  67. Tarkhnishvili DN (2012) Evolutionary history, habitats, diversification, and speciation in Caucasian rock lizards. In: Jenkins OP (ed) Advances in zoology research. Nova Science Publishers, Hauppauge, pp 79–120Google Scholar
  68. Tarkhnishvili D, Gavashelishvili A, Mumladze L (2012) Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biol J Linnean Soc 105:231–248.  https://doi.org/10.1111/j.1095-8312.2011.01788.x CrossRefGoogle Scholar
  69. Thomas O (1906) New insectivores and voles collected by Mr. A. Robert near Trebizond. Ann Mag nato Hist 17:418–419.  https://doi.org/10.1080/00222930608562547 Google Scholar
  70. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L et al (2004) Extinction risk from climate change. Nature 427:145–148.  https://doi.org/10.1038/nature02121 CrossRefPubMedGoogle Scholar
  71. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94.  https://doi.org/10.1007/s10584-011-0151-4 CrossRefGoogle Scholar
  72. Üzüm N (2009) A skeletochronological study of age, growth and longevity in a population of the Caucasian salamander, Mertensiella caucasica (Waga,1876) (Caudata: Salamandridae) from Turkey. North-West J Zool 5:74–84Google Scholar
  73. Van Riemsdijk I, Arntzen JW, Bogaerts S, Franzen M, Litvinchuk SN, Olgun K, Wielstra B (2017) The Near East as a cradle of biodiversity: a phylogeography of banded newts (genus Ommatotriton) reveals extensive inter- and intraspecific genetic differentiation. Mol Phylogenet Evol 114:73–81.  https://doi.org/10.1016/j.ympev.2017.05.028 CrossRefPubMedGoogle Scholar
  74. Vitt L, Caldwell J, Wilbur H, Smith D (1990) Amphibians as harbingers of decay. Bioscience 40:418CrossRefGoogle Scholar
  75. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611.  https://doi.org/10.1111/j.1600-0587.2009.06142.x CrossRefGoogle Scholar
  76. Weisrock DW, Macey JR, Ugurtas IH, Larson A, Papenfuss TJ (2001) Molecular phylogenetics and historical biogeography among salamandrids of the “true” salamander clade: Rapid branching of numerous highly divergent lineages in Mertensiella luschani associated with the rise of Anatolia. Mol Phylogenet Evol 18:434–448.  https://doi.org/10.1006/mpev.2000.0905 CrossRefPubMedGoogle Scholar
  77. Wells KD (2007) The ecology and behavior of amphibians. The University of Chicago Press, Chicago, USA, ILCrossRefGoogle Scholar
  78. Williams L, Zazanashvili N, Sanadiradze G, Kandaurov A (2006) Ecoregional conservation plan for the Caucasus. WWF, KFW, BMZ, CEPF, MacArthur Foundation. Printed by Signar LtdGoogle Scholar
  79. Wormworth J, Şekercioğlu CH (2011) Winged sentinels: Birds and climate change, 1st edn. Cambridge University Press, Port MelbourneCrossRefGoogle Scholar
  80. Wu Y, Wang Y, Jiang K, Hanken J (2013) Significance of pre-Quaternary climate change for montane species diversity: Insights from Asian salamanders (Salamandridae: Pachytriton). Mol Phylogenet Evol 66:380–390.  https://doi.org/10.1016/j.ympev.2012.10.011 CrossRefPubMedGoogle Scholar
  81. Zazanashvili N (2009) The Caucasus hotspot. In: Status and protection of globally threatened species in the Caucasus. In: Zazanashvili N, Mallon D (eds) CEPF, WWF. Tbilisi, GeorgiaGoogle Scholar

Copyright information

© Institute of Zoology, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Arts and ScienceRecep Tayyip Erdoğan UniversityRizeTurkey
  2. 2.Department of Biology, Faculty of ScienceDokuz Eylül UniversityİzmirTurkey

Personalised recommendations