Skip to main content

Advertisement

Log in

Assessment of factors on shoot proliferation potential of nodal explants of Phyllanthus fraternus and assessment of genetic fidelity of micropropagated plants using RAPD marker

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Phyllanthus fraternus is an important medicinal plant, popularly known for its hepatoprotective and antiviral activities since ancient times. Various physiological factors like carbon sources, concentration of agar, pH of the media and effect of season of explants collection were optimized for high frequency regeneration of P. fraternus. The frequency of regeneration, average number and length of shoots were highly influenced by the type and concentration of carbon sources (monosaccharides and disaccharides, 1 to 4%), agar concentration (0.2 to 1%) and pH (4.5 to 6.8) of the media. Media containing 3% sucrose, 0.6% agar at pH 5.8 was best for regeneration. Seasonal variation of explants collection significantly affected the axillary shoots proliferation from explants and best proliferation was observed from explants collected during April to June. Genetic fidelity of regenerated plants was assessed by random amplified polymorphic DNA markers. No polymorphism was detected in micropropagated plants and the mother plant, revealing the genetic homogeneity of the in vitro raised plantlets. This is the first report regarding establishment of genetic fidelity of micropropagated P. fraternus plants, which could be successfully applied for the mass multiplication, germplasm conservation and further genetic transformation assays to meet the ever increasing demand of this medicinally potent plant for industrial and pharmaceutical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAP:

6-benzylaminopurine

MS:

Murashige & Skoog medium

NAA:

α-naphthalene acetic acid

RAPD:

random amplified polymorphic DNA

References

  • Abedin S., Mossa J.S., AI-Said M.S., & AI-Yahya M.A. 2001. Flora of kingdom of Saudi Arabia: National Agriculture and Water Research Centre Riyadh. In: Chaudhary S.A. (ed.) Saudi Arabia, 298 pp.

  • Baskaran P. & Jayabalan N. 2005. An efficient micropropagation system for Eclipta alba — a valuable medicinal herb. In Vitro Cell. Develop. Biol. Plant. 41: 532–538.

    Article  CAS  Google Scholar 

  • Calixto J.B., Santos A.R.S., Cechinel F.V. & Yunes R.A. 1998. A review of the plants of the genus Phyllanthus: Their chemistry, pharmacology and therapeutic potential. Med. Res.Rev. 4: 225–258.

    Article  Google Scholar 

  • Chevreau E., Mourgues F., Neveu M. & Chevalier M. 1997. Effect of gelling agents an antibiotics on adventitious bud regeneration from in vitro leaves of pear. In Vitro Cell. Develop. Biol.Plant. 33: 173–179.

    Article  CAS  Google Scholar 

  • Debergh P.C. 1983. Effects of agar brand and concentration on tissue culture medium. Physiol. Plant. 59: 270–276.

    Article  CAS  Google Scholar 

  • Dhavala A. & Rathore T.S. 2010. Micropropagation of Embelia ribes Burm f. through proliferation of adult plant axillary shoots. In Vitro Cell. Develop. Biol. Plant. 46: 180–191.

    Article  Google Scholar 

  • Doyle J.J. & Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Frabetti M., Gutierrez-Pesce P., Mendoza-de Gyves E., & Rugini E. 2009. Micropropagation of Teucrium fruticans L., an ornamental and medicinal plant. In Vitro Cell. Develop. Biol. Plant. 45: 129–134.

    Article  CAS  Google Scholar 

  • Garg M., Garg C., Dhar V.J. & Kalia A.N. 2010. Standardized alcoholic extract of Phyllanthus fraternus exerts potential action against disturbed biochemical parameters in diabetic animals. Afric. J. Biochem. 4: 186–190.

    Google Scholar 

  • George E.F. & Sherrington P.D. 1984. Plant Propagation by Tissue Culture. Handbook and Directory of Commercial Laboratories, Eastern Press, Reading, Berkshire, pp. 125–330.

    Google Scholar 

  • Henderson W.E. & Kinnersley A.M. 1988. Corn starch as an alternative gelling agent for plant tissue culture. Plant Cell Tiss. Org. Cult. 15: 17–22.

    Article  Google Scholar 

  • Hsiao K.C. & Bornman C.H. 1989. Cyanide initiated nitrogen consumption in autoclaved culture media containing sugars. Plant Cell Rep. 8: 90–92.

    Article  CAS  PubMed  Google Scholar 

  • Hussey G. 1986. Vegetative propagation of plants by tissue culture. In: Yeoman M.M.N. (ed.) Plant Cell Culture, Blackwell Scientific Publications, Oxford, pp. 29–66.

    Google Scholar 

  • Jain S.M. 2001. Tissue culture-derived variation in crop improvement. Euphytica 118:153–166.

    Article  CAS  Google Scholar 

  • Kushwah A.S., Patil B.M. & Thippeswamy B.S. 2010. Effect of Phyllanthus fraternus on fructose induced insulin resistance in rats. Internat. J. Pharmacol. 6: 624–630.

    Article  Google Scholar 

  • Ladyman J.A.R. & Girard B. 1992. Cucumber somatic embryo development on various gelling agents and carbohydrate sources. Hort. Sci. 27: 164–165.

    Google Scholar 

  • Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Murthy H.N. & Praveen N. 2013. Carbon sources and medium pH affects the growth of Withania somnifera (L.) Dunal adventitious roots and withanolide A production. Nat. Prod. Res. 27:185–189.

    Article  CAS  PubMed  Google Scholar 

  • Naik A. K. & Juvekar A. R. 2003. Effect of alkaloid extract of Phyllanthus niruri on HIV replication. Ind. J. Med. Sci. 57: 387–393.

    CAS  Google Scholar 

  • Panse V.G. & Sukhatme P.V. 1998. Statistical Methods for Agricultural Workers. ICAR, New Delhi. 157–165.

    Google Scholar 

  • Phulwaria M., Rai M.K., Patel A.K., Kataria V. & Shekhawat N. S. 2012. A genetically stable rooting protocol for propagation of threatened medicinal plant — Celastrus paniculatus. AoB Plant 5: 1–9.

    Google Scholar 

  • Rai G.K., Singh M., Rai N.P., Bhardwaj D.R. & Kumar S. 2012. In vitro propagation of spine gourd (Momordica dioica Roxb.) and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Physiol. Mol. Biol. Plant. 18: 273–280.

    Article  CAS  Google Scholar 

  • Rajasubramaniam S. & Pardha Saradhi P. 1994. Organic nitrogen stimulates caulogenesis from hypocotyl callus of Phyllanthus fraternus. Plant Cell. Rep. 13: 619–622.

    Article  CAS  PubMed  Google Scholar 

  • Rajasubramaniam S. & Pardha Saradhi P. 1997. Rapid multiplication of Phyllanthus fraternus: a plant with anti-hepatitis viral activity. Indus. Crop. Prod. 6: 35–40.

    Article  Google Scholar 

  • Romano A., Nornha, C. & Martinus-Locao M.A. 1995. Role of carbohydrates in micropropagation of cork oak. Plant Cell Tiss. Org. Cult. 40: 159–167.

    Article  CAS  Google Scholar 

  • Sakano K. 1990. Proton/Phosphate steichiometry in uptake of inorganic phosphate by cultured cells of Catharanthus roseus (L.) G. Don. Plant Physiol. 93: 479–483.

    Article  CAS  Google Scholar 

  • Savita Bhagat A., Pati P.K., Virk G.S. & Nagpal A. 2012. An efficient micropropagation protocol for Citrus jambhiri Lush. and assessment of clonal fidelity employing anatomical studies and RAPD markers. In Vitro Cell. Develop. Biol. Plant. 48: 512–520.

    Article  Google Scholar 

  • Singh J. & Tiwari K.N. 2010. High-frequency in vitro multiplication system for commercial propagation of pharmaceutically important Clitoria ternatea L. — a valuable medicinal plant. Indus. Crop. Prod. 32: 534–538.

    Article  CAS  Google Scholar 

  • Singh J. & Tiwari K.N. 2012. In vitro plant regeneration from decapitated embryonic axes of Clitoria ternatea L. — an important medicinal plant. Indus. Crop. Prod. 35: 224–229.

    Article  CAS  Google Scholar 

  • Singh S.K., Rai M.K. & Sahoo L. 2012. An improved and efficient micro-propagation of Eclipta alba through transverse thin cell layer culture and assessment of clonal fidelity using RAPD analysis. Indus. Crop. Prod. 37: 328–333.

    Article  CAS  Google Scholar 

  • Sridhar T.M. & Naidu C.V. 2011. Effect of different carbon sources on in vitro shoot regeneration of Solanum nigrum (Linn.) — an important antiulcer medicinal plant. J. Phytol. 3: 78–82.

    CAS  Google Scholar 

  • Sul W. & Korban S.S. 2004. Effect of salt formulations, carbon sources, cytokinins, and auxin on shoot organogenesis from cotyledons of Pinus pinea L. Plant Growth Regul. 43: 197–205.

    Article  CAS  Google Scholar 

  • Upadhyay R., Chaurasia J.K., Tiwari K.N. & Singh K. 2013a. Comparative antioxidant study of stem and stem induced callus of Phyllanthus fraternus Webster — an important antiviral and hepatoprotective plant. Appl. Biochem. Biotechnol. 171: 2153–2164.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay R., Tiwari K.N. & Singh K. 2013b. High frequency shoots regeneration for mass multiplication of Phyllanthus fraternus Webster — an important antiviral and hepatoprotective Plant. Appl. Biochem. Biotechnol. 169: 2303–2314.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., Liu K., Xu D., Wang Q., Bi K., Song Y., Li J. & Zhang L. 2013. Rapid micropropagation system in vitro and antioxidant activity of Scabiosa tschiliensis Grunning. Plant Grow. Regul. 69: 305–310.

    Article  CAS  Google Scholar 

  • Yadav K., Aggarwal A. & Singh N. 2013. Evaluation of genetic fidelity among micropropagated plants of Gloriosa superba L. using DNA-based markers-a potential medicinal plant. Fitoterapia 89: 265–270.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavindra Nath Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, R., Kashyap, S.P., Singh, C. et al. Assessment of factors on shoot proliferation potential of nodal explants of Phyllanthus fraternus and assessment of genetic fidelity of micropropagated plants using RAPD marker. Biologia 69, 1685–1692 (2014). https://doi.org/10.2478/s11756-014-0484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0484-3

Key words

Navigation