Heterogeneity of water flow in grassland soil during irrigation experiment

Abstract

The heterogeneity of water flow was evaluated in sandy loam soil covered by grass. The radioactive tracer infiltration experiment was performed at two parallel plots with different irrigation intensities. Effective cross section and degree of preferential flow parameters were used to evaluate flow regime during the experiment. For both plots, the heterogeneity of water flow increased with depth. The differences in irrigation intensity did not result in different values of the effective cross section and degree of preferential flow, indicating similar flow regime within the two experimental plots. The heterogeneity of water flow in shallower depths (0–50 cm) did not change with cumulative infiltration except for early times/small cumulative infiltrations, when the flow paths of preferential flow were formed. In deeper depths (60–70 cm) the flow paths of preferential flow were formed later, and therefore, the heterogeneity of water changed with cumulative infiltration.

This is a preview of subscription content, access via your institution.

Abbreviations

DPF:

degree of preferential flow

ECS:

effective cross section

FCA:

fraction of cross-sectional area

FTWC:

fraction of total water content change

TDR:

time domain reflectometry

References

  1. Alaoui A.M., Germann P., Lichner L. & Novák V. 1997. Preferential transport of water and 131Iodide in a clay loam assessed with TDR-technique and boundary layer flow theory. Hydrol. Earth Syst. Sci. 1: 813–822.

    Article  Google Scholar 

  2. Císlerová M. 2005. Preferential flow in the vadose zone of Cambisols, pp. 23–30. In: Šír M., Lichner Ľ., Tesař M. & Holko L. (eds), Proc. Int. Conf. Hydrology in a Small Watershed 2005. Institute of Hydrodynamics AS CR, Prague. (In Czech)

    Google Scholar 

  3. Dexter A.R. 1993. Heterogeneity of unsaturated, gravitational flow of water through beds of large particles. Water Resour. Res. 29: 1859–1962.

    Article  Google Scholar 

  4. Dohnal M., Dušek J., Vogel T., Císlerová M., Lichner Ľ. & Štekauerová V. 2009. Ponded infiltration into soil with biopores — field experiment and modeling. Biologia 64: 580–584.

    Article  Google Scholar 

  5. Flury M., Flühler H., Jury W.A. & Leuenberger J. 1994. Susceptibility of soils to preferential flow of water: A field study. Water Resour. Res. 30: 1945–1954.

    Article  Google Scholar 

  6. Homolák M., Capuliak J., Pichler V. & Lichner Ľ. 2009. Estimating hydraulic conductivity of a sandy soil under different plant covers using minidisk infiltrometer and a dye tracer experiment. Biologia 64: 600–604.

    Article  Google Scholar 

  7. IAEA 1975. Laboratory Manual on the Use of Radiotracer Techniques in Industry and Environmental Pollution. Technical Reports Series No. 161. International Atomic Energy Agency, Vienna, 120 pp.

    Google Scholar 

  8. Kodešová R., Němeček K., Kodeš V. & Žigová, A. 2012. Using dye tracer for visualization of preferential flow at macro- and microscales. Vadose Zone J. 11, DOI: 10.2136/vzj2011.0088.

  9. Lichner L., Eldridge D.J., Schacht K., Zhukova N., Holko L., Šír M. & Pecho J. 2011. Grass cover influences infiltration into a sandy soil. Pedosphere 21: 719–729.

    CAS  Article  Google Scholar 

  10. Lichner Ľ., Holko L., Zhukova N., Schacht K., Rajkai K., Fodor N. & Sándor R. 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech. 60: 309–318.

    Google Scholar 

  11. Lichner Ľ., Capuliak J., Zhukova N., Holko L., Czachor H. & Kollár J. 2013a. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia 68: 1104–1108.

    CAS  Article  Google Scholar 

  12. Lichner Ľ., Dušek J., Dekker L.W., Zhukova N., Faško P., Holko L. & Šír M. 2013b. Comparison of two methods to assess heterogeneity of water flow in soils. J. Hydrol. Hydromech. 61: 299–304.

    Google Scholar 

  13. Seki M., Oikawa J., Taguchi T., Ohnuki T., Muramatsu Y., Sakamoto K. & Amachi S. 2013. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. Environ. Sci. Technol. 47: 390–397.

    CAS  PubMed  Article  Google Scholar 

  14. Shetaya W.H.A.H. 2011. Iodine Dynamics in Soil. Ph.D. Thesis. University of Nottingham, Nottingham, 171 pp.

    Google Scholar 

  15. Soil Survey Division Staff 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 437 pp.

    Google Scholar 

  16. Täumer K., Stoffregen H. & Wessolek G. 2006. Seasonal dynamics of preferential flow in a water repellent soil. Vadose Zone J. 5: 405–411.

    Article  Google Scholar 

  17. Vogel T., Tesař M. & Císlerová M. 2003. Modeling water regime in a small watershed, pp. 127–136. In: Šír M., Lichner Ľ. & Tesař M. (eds), Proc. Int. Conf. Soil Hydrology in a Small Watershed 2003. Institute of Hydrodynamics AS CR, Prague.

    Google Scholar 

  18. Votrubová J., Dohnal M., Vogel T. & Tesař M. 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil Water Res. 7: 125–137.

    Google Scholar 

  19. WRB 2006. World Reference Base for Soil Resources 2006. 2nd Edition. World Soil Resources Reports No. 103. FAO, Rome, 128 pp.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ľubomír Lichner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lichner, Ľ., Dušek, J., Tesař, M. et al. Heterogeneity of water flow in grassland soil during irrigation experiment. Biologia 69, 1555–1561 (2014). https://doi.org/10.2478/s11756-014-0467-4

Download citation

Key words

  • degree of preferential flow
  • effective cross section
  • infiltration experiment
  • radioactive tracer technique
  • sandy soil