Abstract
The heterogeneity of water flow was evaluated in sandy loam soil covered by grass. The radioactive tracer infiltration experiment was performed at two parallel plots with different irrigation intensities. Effective cross section and degree of preferential flow parameters were used to evaluate flow regime during the experiment. For both plots, the heterogeneity of water flow increased with depth. The differences in irrigation intensity did not result in different values of the effective cross section and degree of preferential flow, indicating similar flow regime within the two experimental plots. The heterogeneity of water flow in shallower depths (0–50 cm) did not change with cumulative infiltration except for early times/small cumulative infiltrations, when the flow paths of preferential flow were formed. In deeper depths (60–70 cm) the flow paths of preferential flow were formed later, and therefore, the heterogeneity of water changed with cumulative infiltration.
Similar content being viewed by others
Abbreviations
- DPF:
-
degree of preferential flow
- ECS:
-
effective cross section
- FCA:
-
fraction of cross-sectional area
- FTWC:
-
fraction of total water content change
- TDR:
-
time domain reflectometry
References
Alaoui A.M., Germann P., Lichner L. & Novák V. 1997. Preferential transport of water and 131Iodide in a clay loam assessed with TDR-technique and boundary layer flow theory. Hydrol. Earth Syst. Sci. 1: 813–822.
Císlerová M. 2005. Preferential flow in the vadose zone of Cambisols, pp. 23–30. In: Šír M., Lichner Ľ., Tesař M. & Holko L. (eds), Proc. Int. Conf. Hydrology in a Small Watershed 2005. Institute of Hydrodynamics AS CR, Prague. (In Czech)
Dexter A.R. 1993. Heterogeneity of unsaturated, gravitational flow of water through beds of large particles. Water Resour. Res. 29: 1859–1962.
Dohnal M., Dušek J., Vogel T., Císlerová M., Lichner Ľ. & Štekauerová V. 2009. Ponded infiltration into soil with biopores — field experiment and modeling. Biologia 64: 580–584.
Flury M., Flühler H., Jury W.A. & Leuenberger J. 1994. Susceptibility of soils to preferential flow of water: A field study. Water Resour. Res. 30: 1945–1954.
Homolák M., Capuliak J., Pichler V. & Lichner Ľ. 2009. Estimating hydraulic conductivity of a sandy soil under different plant covers using minidisk infiltrometer and a dye tracer experiment. Biologia 64: 600–604.
IAEA 1975. Laboratory Manual on the Use of Radiotracer Techniques in Industry and Environmental Pollution. Technical Reports Series No. 161. International Atomic Energy Agency, Vienna, 120 pp.
Kodešová R., Němeček K., Kodeš V. & Žigová, A. 2012. Using dye tracer for visualization of preferential flow at macro- and microscales. Vadose Zone J. 11, DOI: 10.2136/vzj2011.0088.
Lichner L., Eldridge D.J., Schacht K., Zhukova N., Holko L., Šír M. & Pecho J. 2011. Grass cover influences infiltration into a sandy soil. Pedosphere 21: 719–729.
Lichner Ľ., Holko L., Zhukova N., Schacht K., Rajkai K., Fodor N. & Sándor R. 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech. 60: 309–318.
Lichner Ľ., Capuliak J., Zhukova N., Holko L., Czachor H. & Kollár J. 2013a. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia 68: 1104–1108.
Lichner Ľ., Dušek J., Dekker L.W., Zhukova N., Faško P., Holko L. & Šír M. 2013b. Comparison of two methods to assess heterogeneity of water flow in soils. J. Hydrol. Hydromech. 61: 299–304.
Seki M., Oikawa J., Taguchi T., Ohnuki T., Muramatsu Y., Sakamoto K. & Amachi S. 2013. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. Environ. Sci. Technol. 47: 390–397.
Shetaya W.H.A.H. 2011. Iodine Dynamics in Soil. Ph.D. Thesis. University of Nottingham, Nottingham, 171 pp.
Soil Survey Division Staff 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 437 pp.
Täumer K., Stoffregen H. & Wessolek G. 2006. Seasonal dynamics of preferential flow in a water repellent soil. Vadose Zone J. 5: 405–411.
Vogel T., Tesař M. & Císlerová M. 2003. Modeling water regime in a small watershed, pp. 127–136. In: Šír M., Lichner Ľ. & Tesař M. (eds), Proc. Int. Conf. Soil Hydrology in a Small Watershed 2003. Institute of Hydrodynamics AS CR, Prague.
Votrubová J., Dohnal M., Vogel T. & Tesař M. 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil Water Res. 7: 125–137.
WRB 2006. World Reference Base for Soil Resources 2006. 2nd Edition. World Soil Resources Reports No. 103. FAO, Rome, 128 pp.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lichner, Ľ., Dušek, J., Tesař, M. et al. Heterogeneity of water flow in grassland soil during irrigation experiment. Biologia 69, 1555–1561 (2014). https://doi.org/10.2478/s11756-014-0467-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11756-014-0467-4