Skip to main content

Heterogeneity of water flow in grassland soil during irrigation experiment


The heterogeneity of water flow was evaluated in sandy loam soil covered by grass. The radioactive tracer infiltration experiment was performed at two parallel plots with different irrigation intensities. Effective cross section and degree of preferential flow parameters were used to evaluate flow regime during the experiment. For both plots, the heterogeneity of water flow increased with depth. The differences in irrigation intensity did not result in different values of the effective cross section and degree of preferential flow, indicating similar flow regime within the two experimental plots. The heterogeneity of water flow in shallower depths (0–50 cm) did not change with cumulative infiltration except for early times/small cumulative infiltrations, when the flow paths of preferential flow were formed. In deeper depths (60–70 cm) the flow paths of preferential flow were formed later, and therefore, the heterogeneity of water changed with cumulative infiltration.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.



degree of preferential flow


effective cross section


fraction of cross-sectional area


fraction of total water content change


time domain reflectometry


  • Alaoui A.M., Germann P., Lichner L. & Novák V. 1997. Preferential transport of water and 131Iodide in a clay loam assessed with TDR-technique and boundary layer flow theory. Hydrol. Earth Syst. Sci. 1: 813–822.

    Article  Google Scholar 

  • Císlerová M. 2005. Preferential flow in the vadose zone of Cambisols, pp. 23–30. In: Šír M., Lichner Ľ., Tesař M. & Holko L. (eds), Proc. Int. Conf. Hydrology in a Small Watershed 2005. Institute of Hydrodynamics AS CR, Prague. (In Czech)

    Google Scholar 

  • Dexter A.R. 1993. Heterogeneity of unsaturated, gravitational flow of water through beds of large particles. Water Resour. Res. 29: 1859–1962.

    Article  Google Scholar 

  • Dohnal M., Dušek J., Vogel T., Císlerová M., Lichner Ľ. & Štekauerová V. 2009. Ponded infiltration into soil with biopores — field experiment and modeling. Biologia 64: 580–584.

    Article  Google Scholar 

  • Flury M., Flühler H., Jury W.A. & Leuenberger J. 1994. Susceptibility of soils to preferential flow of water: A field study. Water Resour. Res. 30: 1945–1954.

    Article  Google Scholar 

  • Homolák M., Capuliak J., Pichler V. & Lichner Ľ. 2009. Estimating hydraulic conductivity of a sandy soil under different plant covers using minidisk infiltrometer and a dye tracer experiment. Biologia 64: 600–604.

    Article  Google Scholar 

  • IAEA 1975. Laboratory Manual on the Use of Radiotracer Techniques in Industry and Environmental Pollution. Technical Reports Series No. 161. International Atomic Energy Agency, Vienna, 120 pp.

    Google Scholar 

  • Kodešová R., Němeček K., Kodeš V. & Žigová, A. 2012. Using dye tracer for visualization of preferential flow at macro- and microscales. Vadose Zone J. 11, DOI: 10.2136/vzj2011.0088.

  • Lichner L., Eldridge D.J., Schacht K., Zhukova N., Holko L., Šír M. & Pecho J. 2011. Grass cover influences infiltration into a sandy soil. Pedosphere 21: 719–729.

    Article  CAS  Google Scholar 

  • Lichner Ľ., Holko L., Zhukova N., Schacht K., Rajkai K., Fodor N. & Sándor R. 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech. 60: 309–318.

    Google Scholar 

  • Lichner Ľ., Capuliak J., Zhukova N., Holko L., Czachor H. & Kollár J. 2013a. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia 68: 1104–1108.

    Article  CAS  Google Scholar 

  • Lichner Ľ., Dušek J., Dekker L.W., Zhukova N., Faško P., Holko L. & Šír M. 2013b. Comparison of two methods to assess heterogeneity of water flow in soils. J. Hydrol. Hydromech. 61: 299–304.

    Google Scholar 

  • Seki M., Oikawa J., Taguchi T., Ohnuki T., Muramatsu Y., Sakamoto K. & Amachi S. 2013. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. Environ. Sci. Technol. 47: 390–397.

    Article  CAS  PubMed  Google Scholar 

  • Shetaya W.H.A.H. 2011. Iodine Dynamics in Soil. Ph.D. Thesis. University of Nottingham, Nottingham, 171 pp.

    Google Scholar 

  • Soil Survey Division Staff 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 437 pp.

    Google Scholar 

  • Täumer K., Stoffregen H. & Wessolek G. 2006. Seasonal dynamics of preferential flow in a water repellent soil. Vadose Zone J. 5: 405–411.

    Article  Google Scholar 

  • Vogel T., Tesař M. & Císlerová M. 2003. Modeling water regime in a small watershed, pp. 127–136. In: Šír M., Lichner Ľ. & Tesař M. (eds), Proc. Int. Conf. Soil Hydrology in a Small Watershed 2003. Institute of Hydrodynamics AS CR, Prague.

    Google Scholar 

  • Votrubová J., Dohnal M., Vogel T. & Tesař M. 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil Water Res. 7: 125–137.

    Google Scholar 

  • WRB 2006. World Reference Base for Soil Resources 2006. 2nd Edition. World Soil Resources Reports No. 103. FAO, Rome, 128 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ľubomír Lichner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lichner, Ľ., Dušek, J., Tesař, M. et al. Heterogeneity of water flow in grassland soil during irrigation experiment. Biologia 69, 1555–1561 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • degree of preferential flow
  • effective cross section
  • infiltration experiment
  • radioactive tracer technique
  • sandy soil