Skip to main content
Log in

Biological activity of Melia azedarach extracts against Spodoptera exigua

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Melia azedarach is a plant species whose fruits posses nematicidal and insecticidal activity. In this study, we tested two M. azedarach extracts: a crude methanolic fruit extract (CRU) and its limonoids fraction (LIM) produced after partitioning with dichloromethane to check their insecticidal activity against beet armyworm Spodoptera exigua. Both extracts disturbed development of S. exigua. After exposure to CRU and LIM, hatching success was slightly lower, larval-pupal and pupal-imago moulting was significantly disturbed. In physiological studies, CRU extracts decreased the heartbeat of S. exigua pupae. Electron microscopic studies revealed that both extracts caused malformations of fat body and midgut cells. The most common observed malformations were: vacuolization of mitochondria, swollen endoplasmic reticulum and degeneration of nuclei. Obtained results indicated that M. azedarach fruits are a source of substances that may be used in plant protection against S. exigua. Despite the fact that M. azedarach extracts do not cause acute effects, their usage may lead to serious disturbances within exposed insects and significantly decrease activity of pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamski Z. 2007. Exposure to carbaryl leads to ultrastructural changes and alters activity of antioxidant enzymes in Spodoptera exigua (Lepidoptera: Noctuidae). Invertebr. Biol. 126(2): 191–201. DOI: 10.1111/j.1744-7410.2007.00089.x

    Article  Google Scholar 

  • Adamski Z., Banaszkiewicz M. & Ziemnicki K. 2005. Ultrastructural alterations induced by fenitrothion on fat body cells and midgut cells of Tenebrio molitor L. (Insecta, Coleoptera) larva. J. Biol. Res. 3: 15–22.

    CAS  Google Scholar 

  • Adamski Z. & Ghiradella H. 2012. Sublethal effects of pesticides: their impairment of biology and physiology of exposed moths and their unexposed progeny, Chapter 6, pp. 169–186. In: Cauterruccio L. (ed.), Moths: Types, Ecological Significance and Control Methods, Nova Science Publishers Inc., New York, 286 pp. ISBN: 978-1-61470-626-7

    Google Scholar 

  • Ai H., Kuwasawa K., Yazawa T., Kurokawa M., Shimoda M. & Kiguchi K. 1995. A physiological saline for Lepidopterous insects — effects of ionic composition on heart beat and neuromuscular transmission. J. Insect Physiol. 41(7): 571–580. DOI: 10.1016/0022-1910(95)00010-R

    Article  CAS  Google Scholar 

  • Bacci L., Rosado J.F., Picanco M.C., Pereira E.J., Silva G.A. & Martins J.C. 2012. Concentration mortality responses of Myzus persicae and natural enemies to selected insecticides. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 47(12): 1930–1937. DOI: 10.1080/03601234.2012.676494

    Article  CAS  PubMed  Google Scholar 

  • Bohnenstengel F.I., Wray V., Witte L., Srivastava R.P. & Proksch P. 1999. Insecticidal meliacarpins (C-seco limonoids) from Melia azedarach. Phytochemistry 50(6): 977–982. DOI: 10.1016/S0031-9422(98)00644-X

    Article  CAS  Google Scholar 

  • Breuer M., Hoste B., De Loof A. & Naqvi S.N.H. 2003. Effect of Melia azedarach extract on the activity of NADPH-cytochrome c reductase and cholinesterase in insects. Pestic. Biochem. Physiol. 76(3): 99–103. DOI: 10.1016/S0048-3575(03)00067-1

    Article  CAS  Google Scholar 

  • Brewer M.J., Meade T. & Trumble J.T. 1995. Development of insecticide resistant and insecticide susceptible Spodoptera exigua (Lepidoptera, Noctuidae) Exposed to furanocoumarins found in Celery. Environ. Entomol. 24(2): 392–401.

    CAS  Google Scholar 

  • Brewer M.J. & Trumble J.T. 1994. Beet armyworm resistance to fenvalerate and methomyl — resistance variation and insecticide synergism. J. Agric. Entomol. 11(4): 291–300.

    CAS  Google Scholar 

  • Bullangpoti V., Wajnberg E., Audant P. & Feyereisen R. 2012. Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest. Manage. Sci. 68(9): 1255–1264. DOI: 10.1002/ps.3291

    Article  CAS  Google Scholar 

  • Buyukguzel E., Buyukguzel K., Snela M., Erdem M., Radtke K., Ziemnicki K. & Adamski Z. 2013. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella. Cell. Biol. Toxicol. 29(2): 117–129. DOI: 10.1007/s10565-013-9240-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carpinella C., Ferrayoli C., Valladares G., Defago M. & Palacios S. 2002. Potent limonoid insect antifeedant from Melia azedarach. Biosci. Biotech. Biochem. 66(8): 1731–1736. DOI: 10.1271/bbb.66.1731

    Article  CAS  Google Scholar 

  • Carpinella M.C., Defago M.T., Valladares G. & Palacios S.M. 2003. Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J. Agric. Food Chem. 51(2): 369–374. DOI: 10.1021/jf025811w

    Article  CAS  PubMed  Google Scholar 

  • Cavoski I., Chami Z.A., Bouzebboudja F., Sasanelli N., Simeone V., Mondelli D., Miano T., Sarais G., Ntalli N.G. & Caboni P. 2012. Melia azedarach controls Meloidogyne incognita and triggers plant defense mechanisms on cucumber. Crop Protection 35: 85–90. DOI: 10.1016/j.cropro.2012.01.011

    Article  Google Scholar 

  • Charleston D.S., Kfir R., Dicke M. & Vet L.E.M. 2005. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamondback moth. Biol. Control 33(2): 131–142. DOI: 10.1016/j.biocontrol.2005.02.007

    Article  Google Scholar 

  • David W.A.L., Ellaby S. & Taylor G. 1975. Rearing Spodoptera exempta on semisynthetic diets and on growing maize. Entomol. Exp. Appl. 18(2): 226–237. DOI: 10.1111/j.1570- 7458.1975.tb02374.x

    Article  Google Scholar 

  • Farag M., Ahmed M.H.M., Yousef H. & Abdel-Rahman A.A.H. 2011. Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Zeitschrift für Naturforschung C 66c(3–4): 129–135.

    Article  Google Scholar 

  • Feliciano D.F., Bassani R.A., Oliveira P.X. & Bassani J.W. 2011. Pacemaker activity in the insect (T. molitor) heart: role of the sarcoplasmic reticulum. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301(6): R1838–1845. DOI: 10.1152/ajpregu.00089.2011

    Article  CAS  PubMed  Google Scholar 

  • Hall D. & Richardson M. 2013. Toxicity of insecticidal soaps to the Asian citrus psyllid and two of its natural enemies. J. Appl. Entomol. 137(5): 347–354. DOI: 10.1111/j.1439-0418.2012.01749.x

    Article  CAS  Google Scholar 

  • Ishtiaq M. & Saleem M.A. 2011. Generating susceptible strain and resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) against some conventional and new chemistry insecticides in Pakistan. J. Econ. Entomol. 104(4): 1343–1348. DOI: http://dx.doi.org/10.1603/EC10383

    Article  CAS  PubMed  Google Scholar 

  • Isman M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51: 45–66. DOI: 10.1146/annurev.ento.51.110104.151146

    Article  CAS  PubMed  Google Scholar 

  • Jia B.T., Liu Y.J., Zhu Y.C., Liu X.G., Gao C.F. & Shen J.L. 2009. Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Pest Manage. Sci. 65(9): 996–1002. DOI: 10.1002/ps.1785

    Article  CAS  Google Scholar 

  • Lazzeri L., Curto G., Leoni O. & Dallavalle E. 2004. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. J. Agric. Food Chem. 52(22): 6703–6707. DOI: 10.1021/jf030776u

    Article  CAS  PubMed  Google Scholar 

  • Li W., Liu Y., Zhao Y., Zhou X.W., Yang L., Feng G. & Kou L. 2012. Antifeedant activity of camptothecin and its semisynthetic derivatives against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) larvae. Current Bioactive Compounds 8(3): 291–295. DOI: http://dx.doi.org/10.2174/157340712802762438

    Article  CAS  Google Scholar 

  • Marciniak P., Adamski Z., Bednarz P., Slocinska M., Ziemnicki K., Lelario F., Scrano L. & Bufo S.A. 2010. Cardioinhibitory properties of potato glycoalkaloids in beetles. Bull. Environ. Contam. Toxicol. 84(2): 153–156. DOI: 10.1007/s00128-009-9921-3

    Article  CAS  PubMed  Google Scholar 

  • Mordue A.J. & Blackwell A. 1993. Azadirachtin — an update. J Insect Physiol. 39(11): 903–924. DOI: 10.1016/0022-1910(93)90001-8

    Article  CAS  Google Scholar 

  • Murugesan S. & Muthusamy M. 2011. Efficacy of Melia azedarach on the larvae of three mosquito species Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Eur. Mosquito Bull. 29: 116–121.

    Google Scholar 

  • Ntalli N.G. & Caboni P. 2012. Botanical nematicides: A review. J. Agric. Food Chem. 60(40): 9929–9940. DOI: 10.1021/jf303107j

    Article  CAS  PubMed  Google Scholar 

  • Ntalli N.G., Cottiglia F., Bueno C.A., Alche L.E., Leonti M., Vargiu S., Bifulco E., Menkissoglu-Spiroudi U. & Caboni P. 2010. Cytotoxic tirucallane triterpenoids from Melia azedarach fruits. Molecules 15(9): 5866–5877. DOI: 10.3390/molecules15095866

    Article  CAS  PubMed  Google Scholar 

  • Ntalli N.G., Menkissoglu-Spiroudi U. & Giannakou I. 2010. Nematicidal activity of powder and extracts of Melia azedarach fruits against Meloidogyne incognita. Ann. Appl. Biol. 156(2): 309–317. DOI: 10.1111/j.1744-7348.2009.00388.x

    Article  Google Scholar 

  • Piazza N. & Wessells R.J. 2011. Drosophila models of cardiac disease. Prog. Mol. Biol. Transl. Sci. 100: 155–210. DOI: 10.1016/B978-0-12-384878-9.00005-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosinski G. & Gäde G. 1988. Hyperglycemic and myoactive factors in the corpora cardiaca of the mealworm, Tenebrio molitor. J. Insect Physiol. 34(11): 1035–1042. DOI: 10.1016/0022-1910(88)90203-X

    Article  CAS  Google Scholar 

  • Roy A. & Saraf S. 2006. Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharmaceut. Bull. 29(2): 191–201. DOI: http://dx.doi.org/10.1248/bpb.29.191

    Article  CAS  Google Scholar 

  • Salehzadeh A., Akhkha A., Cushley W., Adams R.L.P., Kusel J.R. & Strang R.H.C. 2003. The antimitotic effect of the neem terpenoid azadirachtin on cultured insect cells. Insect Biochem. Mol. Biol. 33(7): 681–689. DOI: 10.1016/S0965-1748(03)00057-2

    Article  CAS  PubMed  Google Scholar 

  • Slama K. & Rosinski G. 2005. Delayed pharmacological effects of proctolin and CCAP on heartbeat in pupae of the tobacco hornworm, Manduca sexta. Physiol. Entomol. 30(1): 14–28. DOI: 10.1111/j.0307-6962.2005.00420.x

    Article  CAS  Google Scholar 

  • Taylor J.E. & Riley D.G. 2008. Artificial infestations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), used to estimate an economic injury level in tomato. Crop. Protection 27(2): 268–274. DOI: 10.1016/j.cropro.2007.05.014

    Article  Google Scholar 

  • Tiyagi S.A., Mahmood I., Khan Z. & Ahmad H. 2011. Biological control of soil-pathogenic nematodes infecting mungbean using Pseudomonas fluorescens. Arch. Phytopathol. Plant Prot. 44(18): 1770–1778. DOI: 10.1080/03235401003633840

    Article  Google Scholar 

  • Wang Y., Chen L., Yu R., Zhao X., Wu C., Cang T. & Wang Q. 2012. Insecticide toxic effects on Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Pest Manage. Sci. 68(12): 1564–1571. DOI: 10.1002/ps.3343.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Marciniak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntalli, N., Kopiczko, A., Radtke, K. et al. Biological activity of Melia azedarach extracts against Spodoptera exigua . Biologia 69, 1606–1614 (2014). https://doi.org/10.2478/s11756-014-0454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0454-9

Key words

Navigation