, Volume 69, Issue 11, pp 1606–1614 | Cite as

Biological activity of Melia azedarach extracts against Spodoptera exigua

  • Nikoletta Ntalli
  • Agnieszka Kopiczko
  • Katarzyna Radtke
  • Pawel MarciniakEmail author
  • Grzegorz Rosinski
  • Zbigniew Adamski
Section Zoology


Melia azedarach is a plant species whose fruits posses nematicidal and insecticidal activity. In this study, we tested two M. azedarach extracts: a crude methanolic fruit extract (CRU) and its limonoids fraction (LIM) produced after partitioning with dichloromethane to check their insecticidal activity against beet armyworm Spodoptera exigua. Both extracts disturbed development of S. exigua. After exposure to CRU and LIM, hatching success was slightly lower, larval-pupal and pupal-imago moulting was significantly disturbed. In physiological studies, CRU extracts decreased the heartbeat of S. exigua pupae. Electron microscopic studies revealed that both extracts caused malformations of fat body and midgut cells. The most common observed malformations were: vacuolization of mitochondria, swollen endoplasmic reticulum and degeneration of nuclei. Obtained results indicated that M. azedarach fruits are a source of substances that may be used in plant protection against S. exigua. Despite the fact that M. azedarach extracts do not cause acute effects, their usage may lead to serious disturbances within exposed insects and significantly decrease activity of pests.

Key words

Spodoptera exigua Melia azedarach insecticidal activity insect tissue ultrastructure insect physiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamski Z. 2007. Exposure to carbaryl leads to ultrastructural changes and alters activity of antioxidant enzymes in Spodoptera exigua (Lepidoptera: Noctuidae). Invertebr. Biol. 126(2): 191–201. DOI: 10.1111/j.1744-7410.2007.00089.xCrossRefGoogle Scholar
  2. Adamski Z., Banaszkiewicz M. & Ziemnicki K. 2005. Ultrastructural alterations induced by fenitrothion on fat body cells and midgut cells of Tenebrio molitor L. (Insecta, Coleoptera) larva. J. Biol. Res. 3: 15–22.Google Scholar
  3. Adamski Z. & Ghiradella H. 2012. Sublethal effects of pesticides: their impairment of biology and physiology of exposed moths and their unexposed progeny, Chapter 6, pp. 169–186. In: Cauterruccio L. (ed.), Moths: Types, Ecological Significance and Control Methods, Nova Science Publishers Inc., New York, 286 pp. ISBN: 978-1-61470-626-7Google Scholar
  4. Ai H., Kuwasawa K., Yazawa T., Kurokawa M., Shimoda M. & Kiguchi K. 1995. A physiological saline for Lepidopterous insects — effects of ionic composition on heart beat and neuromuscular transmission. J. Insect Physiol. 41(7): 571–580. DOI: 10.1016/0022-1910(95)00010-RCrossRefGoogle Scholar
  5. Bacci L., Rosado J.F., Picanco M.C., Pereira E.J., Silva G.A. & Martins J.C. 2012. Concentration mortality responses of Myzus persicae and natural enemies to selected insecticides. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 47(12): 1930–1937. DOI: 10.1080/03601234.2012.676494PubMedCrossRefGoogle Scholar
  6. Bohnenstengel F.I., Wray V., Witte L., Srivastava R.P. & Proksch P. 1999. Insecticidal meliacarpins (C-seco limonoids) from Melia azedarach. Phytochemistry 50(6): 977–982. DOI: 10.1016/S0031-9422(98)00644-XCrossRefGoogle Scholar
  7. Breuer M., Hoste B., De Loof A. & Naqvi S.N.H. 2003. Effect of Melia azedarach extract on the activity of NADPH-cytochrome c reductase and cholinesterase in insects. Pestic. Biochem. Physiol. 76(3): 99–103. DOI: 10.1016/S0048-3575(03)00067-1CrossRefGoogle Scholar
  8. Brewer M.J., Meade T. & Trumble J.T. 1995. Development of insecticide resistant and insecticide susceptible Spodoptera exigua (Lepidoptera, Noctuidae) Exposed to furanocoumarins found in Celery. Environ. Entomol. 24(2): 392–401.Google Scholar
  9. Brewer M.J. & Trumble J.T. 1994. Beet armyworm resistance to fenvalerate and methomyl — resistance variation and insecticide synergism. J. Agric. Entomol. 11(4): 291–300.Google Scholar
  10. Bullangpoti V., Wajnberg E., Audant P. & Feyereisen R. 2012. Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest. Manage. Sci. 68(9): 1255–1264. DOI: 10.1002/ps.3291CrossRefGoogle Scholar
  11. Buyukguzel E., Buyukguzel K., Snela M., Erdem M., Radtke K., Ziemnicki K. & Adamski Z. 2013. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella. Cell. Biol. Toxicol. 29(2): 117–129. DOI: 10.1007/s10565-013-9240-7PubMedCentralPubMedCrossRefGoogle Scholar
  12. Carpinella C., Ferrayoli C., Valladares G., Defago M. & Palacios S. 2002. Potent limonoid insect antifeedant from Melia azedarach. Biosci. Biotech. Biochem. 66(8): 1731–1736. DOI: 10.1271/bbb.66.1731CrossRefGoogle Scholar
  13. Carpinella M.C., Defago M.T., Valladares G. & Palacios S.M. 2003. Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J. Agric. Food Chem. 51(2): 369–374. DOI: 10.1021/jf025811wPubMedCrossRefGoogle Scholar
  14. Cavoski I., Chami Z.A., Bouzebboudja F., Sasanelli N., Simeone V., Mondelli D., Miano T., Sarais G., Ntalli N.G. & Caboni P. 2012. Melia azedarach controls Meloidogyne incognita and triggers plant defense mechanisms on cucumber. Crop Protection 35: 85–90. DOI: 10.1016/j.cropro.2012.01.011CrossRefGoogle Scholar
  15. Charleston D.S., Kfir R., Dicke M. & Vet L.E.M. 2005. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamondback moth. Biol. Control 33(2): 131–142. DOI: 10.1016/j.biocontrol.2005.02.007CrossRefGoogle Scholar
  16. David W.A.L., Ellaby S. & Taylor G. 1975. Rearing Spodoptera exempta on semisynthetic diets and on growing maize. Entomol. Exp. Appl. 18(2): 226–237. DOI: 10.1111/j.1570- 7458.1975.tb02374.xCrossRefGoogle Scholar
  17. Farag M., Ahmed M.H.M., Yousef H. & Abdel-Rahman A.A.H. 2011. Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Zeitschrift für Naturforschung C 66c(3–4): 129–135.CrossRefGoogle Scholar
  18. Feliciano D.F., Bassani R.A., Oliveira P.X. & Bassani J.W. 2011. Pacemaker activity in the insect (T. molitor) heart: role of the sarcoplasmic reticulum. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301(6): R1838–1845. DOI: 10.1152/ajpregu.00089.2011PubMedCrossRefGoogle Scholar
  19. Hall D. & Richardson M. 2013. Toxicity of insecticidal soaps to the Asian citrus psyllid and two of its natural enemies. J. Appl. Entomol. 137(5): 347–354. DOI: 10.1111/j.1439-0418.2012.01749.xCrossRefGoogle Scholar
  20. Ishtiaq M. & Saleem M.A. 2011. Generating susceptible strain and resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) against some conventional and new chemistry insecticides in Pakistan. J. Econ. Entomol. 104(4): 1343–1348. DOI: 10.1603/EC10383 PubMedCrossRefGoogle Scholar
  21. Isman M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51: 45–66. DOI: 10.1146/annurev.ento.51.110104.151146PubMedCrossRefGoogle Scholar
  22. Jia B.T., Liu Y.J., Zhu Y.C., Liu X.G., Gao C.F. & Shen J.L. 2009. Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Pest Manage. Sci. 65(9): 996–1002. DOI: 10.1002/ps.1785CrossRefGoogle Scholar
  23. Lazzeri L., Curto G., Leoni O. & Dallavalle E. 2004. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. J. Agric. Food Chem. 52(22): 6703–6707. DOI: 10.1021/jf030776uPubMedCrossRefGoogle Scholar
  24. Li W., Liu Y., Zhao Y., Zhou X.W., Yang L., Feng G. & Kou L. 2012. Antifeedant activity of camptothecin and its semisynthetic derivatives against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) larvae. Current Bioactive Compounds 8(3): 291–295. DOI: 10.2174/157340712802762438 CrossRefGoogle Scholar
  25. Marciniak P., Adamski Z., Bednarz P., Slocinska M., Ziemnicki K., Lelario F., Scrano L. & Bufo S.A. 2010. Cardioinhibitory properties of potato glycoalkaloids in beetles. Bull. Environ. Contam. Toxicol. 84(2): 153–156. DOI: 10.1007/s00128-009-9921-3PubMedCrossRefGoogle Scholar
  26. Mordue A.J. & Blackwell A. 1993. Azadirachtin — an update. J Insect Physiol. 39(11): 903–924. DOI: 10.1016/0022-1910(93)90001-8CrossRefGoogle Scholar
  27. Murugesan S. & Muthusamy M. 2011. Efficacy of Melia azedarach on the larvae of three mosquito species Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Eur. Mosquito Bull. 29: 116–121.Google Scholar
  28. Ntalli N.G. & Caboni P. 2012. Botanical nematicides: A review. J. Agric. Food Chem. 60(40): 9929–9940. DOI: 10.1021/jf303107jPubMedCrossRefGoogle Scholar
  29. Ntalli N.G., Cottiglia F., Bueno C.A., Alche L.E., Leonti M., Vargiu S., Bifulco E., Menkissoglu-Spiroudi U. & Caboni P. 2010. Cytotoxic tirucallane triterpenoids from Melia azedarach fruits. Molecules 15(9): 5866–5877. DOI: 10.3390/molecules15095866PubMedCrossRefGoogle Scholar
  30. Ntalli N.G., Menkissoglu-Spiroudi U. & Giannakou I. 2010. Nematicidal activity of powder and extracts of Melia azedarach fruits against Meloidogyne incognita. Ann. Appl. Biol. 156(2): 309–317. DOI: 10.1111/j.1744-7348.2009.00388.xCrossRefGoogle Scholar
  31. Piazza N. & Wessells R.J. 2011. Drosophila models of cardiac disease. Prog. Mol. Biol. Transl. Sci. 100: 155–210. DOI: 10.1016/B978-0-12-384878-9.00005-4.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Rosinski G. & Gäde G. 1988. Hyperglycemic and myoactive factors in the corpora cardiaca of the mealworm, Tenebrio molitor. J. Insect Physiol. 34(11): 1035–1042. DOI: 10.1016/0022-1910(88)90203-XCrossRefGoogle Scholar
  33. Roy A. & Saraf S. 2006. Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharmaceut. Bull. 29(2): 191–201. DOI: 10.1248/bpb.29.191 CrossRefGoogle Scholar
  34. Salehzadeh A., Akhkha A., Cushley W., Adams R.L.P., Kusel J.R. & Strang R.H.C. 2003. The antimitotic effect of the neem terpenoid azadirachtin on cultured insect cells. Insect Biochem. Mol. Biol. 33(7): 681–689. DOI: 10.1016/S0965-1748(03)00057-2PubMedCrossRefGoogle Scholar
  35. Slama K. & Rosinski G. 2005. Delayed pharmacological effects of proctolin and CCAP on heartbeat in pupae of the tobacco hornworm, Manduca sexta. Physiol. Entomol. 30(1): 14–28. DOI: 10.1111/j.0307-6962.2005.00420.xCrossRefGoogle Scholar
  36. Taylor J.E. & Riley D.G. 2008. Artificial infestations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), used to estimate an economic injury level in tomato. Crop. Protection 27(2): 268–274. DOI: 10.1016/j.cropro.2007.05.014CrossRefGoogle Scholar
  37. Tiyagi S.A., Mahmood I., Khan Z. & Ahmad H. 2011. Biological control of soil-pathogenic nematodes infecting mungbean using Pseudomonas fluorescens. Arch. Phytopathol. Plant Prot. 44(18): 1770–1778. DOI: 10.1080/03235401003633840CrossRefGoogle Scholar
  38. Wang Y., Chen L., Yu R., Zhao X., Wu C., Cang T. & Wang Q. 2012. Insecticide toxic effects on Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Pest Manage. Sci. 68(12): 1564–1571. DOI: 10.1002/ps.3343.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Nikoletta Ntalli
    • 1
  • Agnieszka Kopiczko
    • 2
    • 3
  • Katarzyna Radtke
    • 2
    • 3
  • Pawel Marciniak
    • 3
    Email author
  • Grzegorz Rosinski
    • 3
  • Zbigniew Adamski
    • 2
    • 3
  1. 1.Pesticide Science Laboratory, Faculty of AgricultureAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Electron and Confocal Microscope Laboratory, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
  3. 3.Department of Animal Physiology and DevelopmentAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations