Skip to main content

A comparison of the vegetation of forested and non-forested solution dolines in Hungary: a preliminary study

Abstract

The present study compares the vegetation characteristics of two large forested and one large non-forested solution dolines in Hungary. We investigated the species composition and vegetation pattern along north to south transects (across the doline bottoms) and compared the richness of different species groups (dry and wet groups) on the doline slopes. We applied linear regression models for each slope to explore the effects of topography on species richness, and Detrended Correspondence Analysis (DCA) to detect the major gradients of floristic variation within each site. We found that the vegetation changed significantly along all transects; and, regardless of the vegetation cover, the doline bottoms contained several cool-adapted species. Variations within the two species groups were more pronounced on the south-facing slopes. The changes were similar in the forested dolines, indicating the role of forest cover in maintaining many cool-adapted species on the north-facing slopes as well. However, the number of cool-adapted species increased significantly along both slopes of the non-forested doline from the upper edge to the bottom. Contrary to our expectations, the species turnover along the slopes of the non-forested doline was lower than that along the slopes of the forested ones. We conclude that both the forested and non-forested dolines serve as refuges for many plant species adapted to different environmental conditions. Apart from providing an understanding of population patterns along environmental gradients, our results may also contribute to our understanding of an even more fundamental question for a future research agenda: the probable effects of climate change on vegetation characteristics in climatic islands with environmental conditions substantially different from the surrounding areas.

This is a preview of subscription content, access via your institution.

References

  1. Antonić O., Kušan V. & Hrašovec B. 1997. Microclimatic and topoclimatic differences between the phytocoenoses in the Viljska Ponikva Sinkhole, Mt. Risnjak, Croatia. Hrvatski Meteorološki Časopis 32: 37–49.

    Google Scholar 

  2. Armesto J.J. & Martínez J.A. 1978. Relations between vegetation structure and slope aspect in the Mediterranean region of Chile. J. Ecol. 66: 881–889.

    Article  Google Scholar 

  3. Bacsó N. & Zólyomi B. 1934. Mikroklíma és növényzet a Bükkfennsíkon. Időjárás 38: 177–196.

    Google Scholar 

  4. Bárány-Kevei I. 1998. Connection between morphology and ecological factors of karst dolines (Aggtelek Hills, Hungary). Suppl. Geogr. Fis. Dinam. Quat III, T. 4-1998. 115–119.

    Google Scholar 

  5. Bárány-Kevei I.1999. Microclimate of karstic dolines. Acta Climatologica 32–33: 19–27.

  6. Bartha A. 1933. Szakosztály ügyek — Dracocephalum ruyschiana a Bükk hegységben. Bot. Közl. 30: 114.

    Google Scholar 

  7. Bátori Z., Csiky J., Erdős L., Morschhauser T., Török P. & Körmöczi L. 2009. Vegetation of the dolines in Mecsek Mountains (South Hungary) in relation to the local plant communities. Acta Carsologica 38: 237–252.

    Google Scholar 

  8. Bátori Z., Csiky J., Farkas T., Vojtkó E.A., Erdős L., Kovács D., Wirth T., Körmöczi L. & Vojtkó A. 2014a. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change. Int. J. Speleol. 43: 15–26.

    Article  Google Scholar 

  9. Bátori Z., Gallé R., Erdős L. & Körmöczi L. 2011. Ecological conditions, flora and vegetation of a large doline in the Mecsek Mountains (South Hungary). Acta Bot. Croat. 70: 147–155.

    Google Scholar 

  10. Bátori Z., Körmöczi L., Erdős L., Zalatnai M. & Csiky J. 2012. Importance of karst sinkholes in preserving relict, mountain and wet woodland plant species under sub-Mediterranean climate: a case study from southern Hungary. J. Cave Karst Stud. 74: 127–144.

    Article  Google Scholar 

  11. Bátori Z., Lengyel A., Maróti M., Körmöczi L., Tölgyesi Cs., Bíró A., Tóth M., Kincses Z., Cseh V., Erdős L. 2014b. Microclimate-vegetation relationships in natural habitat islands: species preservation and conservation perspectives. Időjárás 118: 257–281.

    Google Scholar 

  12. Beck v. Mannagetta G. 1906. Die Umkehrung der Pflanzenregionen in den Dolinen des Karstes. Sitzungsberichte der Kaiserliche Akademie der Wissenschaften in Wien 65: 3–4.

    Google Scholar 

  13. Borhidi A., Kevey B. & Lendvai G. 2012. Plant communities of Hungary. Akadémiai Kiadó, Budapest, 544 pp.

    Google Scholar 

  14. Dakskobler I., Sinjur I., Veber I. & Zupan B. 2008. Localities and sites of Pulsatilla vernalis in the Julian Alps. Hacquetia 7: 47–69.

    Article  Google Scholar 

  15. Dobrowski S.Z. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Change Biol. 17: 1022–1035.

    Article  Google Scholar 

  16. Egli B.R. 1991. The special flora, ecological and edaphic conditions of dolines in the mountains of Crete. Botanica Chronica 10: 325–335.

    Google Scholar 

  17. Erdős L., Méri Á., Bátori Z., Gallé R. & Körmöczi L. 2012. Northsouth facing vegetation gradients in the Villány Mts: a case study on the population and the community level. Pakistan J. Bot. 44: 927–932.

    Google Scholar 

  18. Gargano D., Vecchio G. & Bernardo L. 2010. Plant-soil relationships in fragments of Mediterranean snow-beds: ecological and conservation implications. Plant Ecol. 207: 175–189.

    Article  Google Scholar 

  19. Geiger R., 1950. Das Klima der bodennahen Luftschicht: Ein Lehrbuch der Mikroklimatologie. Die Wissenschaft, 4. Verlag F. Vieweg and Sohn, Braunschweig, 460 pp.

    Google Scholar 

  20. Hammer Ø., Harper D.A.T. & Ryan P.D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron, http://palaeo-electronica.org/2001_1/past/issue1_01.htm

    Google Scholar 

  21. Hampe A. & Jump A.S. 2011. Climate relicts: Past, present, future. Annu. Rev. Ecol. Evol. Syst 42: 313–333.

    Article  Google Scholar 

  22. Hicks R.R. & Frank P.S. 1984. Relationship of aspect to soil nutrients, species importance and biomass in a forested watershed in West Virginia. For. Ecol. Manage. 8: 281–291.

    CAS  Article  Google Scholar 

  23. Hill M.O. & Gauch H.G. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  24. Horvat I. 1953. Vegetacija ponikava. Geografski Glasnik 14–15: 1–5.

    Google Scholar 

  25. Hutchins R.B., Blevins R.L., Hill J.D. & White E.H. 1976. The influence of soils and microclimate on vegetation of forested slopes in Eastern Kentucky. Soil Sci. 121: 234–241.

    Article  Google Scholar 

  26. Jakucs L. 1971. A karsztok morfogenetikája. Akadémiai Kiadó, Budapest, 310 pp.

    Google Scholar 

  27. Jakucs P. & Jurko A. 1967. Querco petraeae-Carpinetum waldsteinietosum, eine neue Subasszoziation aus dem slowakischen und ungarischen Karstgebiet. Biologia 22: 321–335.

    Google Scholar 

  28. Kevey B. 1997. A Nyugati-Mecsek szurdokerdei (Scutellario altissimae-Aceretum (Horvát A. O. 1958) Soó et Borhidi in Soó 1962), pp. 75–79. In: Borhidi A. & Szabó L.Gy. (eds), Studia Phytologica Jubilaria. Dissertationes in honorem jubilantis Adolf Olivér Horvát Doctor Academiae in annoversario nonagesimo nativitatis 1907–1997, Pécs, Hungary.

    Google Scholar 

  29. Kevey B. & Borhidi A. 1998. Top-forest (Aconito anthorae-Fraxinetum orni). A special ecotonal case in the phytosociological system (Mecsek Mts., South Hungary). Acta Bot. Hung. 41: 27–121.

    Google Scholar 

  30. Király G. (ed.) 2007. Vörös lista. A magyarországi edényes flora veszélyeztetett fajai. Saját kiadás, Sopron, 73 pp.

    Google Scholar 

  31. Király G. (ed.) 2009. Új magyar füvészkönyv. Aggteleki Nemzeti Park Igazgatóság, Jósvafő, 616 pp.

    Google Scholar 

  32. Kutiel P. & Lavee H. 1999. Effect of slope aspect on soil and vegetation properties along an aridity transect. Isr. J. Plant Sci. 47: 169–178.

    Article  Google Scholar 

  33. Lazarević P., Lazarević M., Krivošej Z. & Stevanović V. 2009. On the distribution of Dracocephalum ruyschiana (Lamiaceae) in the Balkan Peninsula. Phytologia Balcanica 15: 175–179.

    Google Scholar 

  34. Lehmann A. 1970. Tarvágás által okozott ökológiai változások az abaligeti karszton. Pécsi Műszaki Szemle 25: 15–21.

    Google Scholar 

  35. Marosi S. & Somogyi S. (eds) 1990. Magyarország kistájainak katasztere I–II. MTA Földrajztudományi Kutató Intézet, Budapest, 479 pp.

    Google Scholar 

  36. Nagy J. 2004. Scree forests (Mercuriali-Tilietum) of the Börzsöny Mountains, Hungary. Acta Bot. Hung. 46: 319–336.

    Article  Google Scholar 

  37. Özkan K., Gulsoy S., Mert A., Ozturk M. & Muys B. 2010. Plant distribution-altitude and landform relationships in karstic sinkholes of Mediterranean region of Turkey. J. Environ. Biol. 31: 51–61.

    PubMed  Google Scholar 

  38. R Development Core Team. 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. www.R-project.org

    Google Scholar 

  39. Redžić S., Barudanović S., Trakić S. & Kulijer D. 2011. Vascular plant biodiversity richness and endemo-relictness of the karst mountains Prenj, Čvrsniva and Čabulja in Bosnia and Herzegovina (W. Balkan). Acta Carsologica 40: 527–555.

    Google Scholar 

  40. Ujvárosy A. 1998. Földrajzi helyzet, éghajlati viszonyok, pp. 22–26. In: Baross G. (ed.), Az Aggteleki Nemzeti Park. Budapest, Mezőgazda Kiadó, Hungary.

    Google Scholar 

  41. Vilisics F., Sólymos P., Nagy A., Farkas R., Kemencei Z. & Hornung E. 2011. Small scale gradient effects on isopds (Crustacea: Oniscidea) in karstic sinkholes. Biologia 66: 499–505.

    Article  Google Scholar 

  42. Vojtkó A.1994. Adatok a Bükk hegység flórájához. Bot. Közl. 81: 165–175.

  43. Vojtkó A.2003. A Tornai-karszt töbreinek cönológiai jellegzetességei. Bot. Közl. 90: 167–168.

  44. Webster R. 1978. Optimally partitioning soil transects. J. Soil Sci. 29: 388–402.

    Article  Google Scholar 

  45. Whiteman C.D., Haiden T., Pospichal B., Eisenbach S. & Steinacker R. 2004. Minimum temperatures, diurnal temperature ranges, and temperature inversion in limestone sinkholes of different sizes and shapes. J. Appl. Meteorol. 43: 1224–1236.

    Article  Google Scholar 

  46. Yannitsaros A.G., Constantinidis T.A. & Vassiliades D.D.1996. The rediscovery of Biebersteinia orphanidis Boiss. (Geraniaceae) in Greece. Bot. J. Linn. Soc. 120: 239–242.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zoltán Bátori.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bátori, Z., Farkas, T., Erdős, L. et al. A comparison of the vegetation of forested and non-forested solution dolines in Hungary: a preliminary study. Biologia 69, 1339–1348 (2014). https://doi.org/10.2478/s11756-014-0430-4

Download citation

Key words

  • climate change
  • karst surface
  • refugium
  • relict species
  • species turnover