Skip to main content

Advertisement

Log in

Role of different aberrant cell signalling pathways prevalent in acute lymphoblastic leukemia

  • Review
  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Acute lymphoblastic leukemia (ALL) is one of the major forms of leukemia that affects mostly adolescent individuals. The main cause of the development of ALL is not known though several important signal transduction pathways have been reported with functional abnormality in all the cases. Crucial signalling pathways reported in ALL include PI3K/Akt, Notch, Wnt, mTOR, JaK/Stat, etc. Over the past several decades important progress has been made in the management of ALL, however, relapses and post therapy survival ratio has not improved much. This brings the need for understanding the biology and mechanism involved in ALL occurrences and find new molecular targets for better treatment options and risk-adapted therapies to improve the outcome of ALL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALL:

acute lymphoblastic leukemia

APC:

adenomatous polyposis coli

GSI:

Γ-secreatase inhibitor

ic-N:

intracellular portion of Notch

JaK:

Janus kinase

mTOR:

mammalian target of rapamycin

PI3K:

phosphotidylinositol-3OH-kinase

PTEN:

phosphatase and tensin homolog located on chromosome 10

SHIP:

Src homology 2 domain containing inositol phosphatase

Stat:

signal transducer and activator of transcription

References

  • Aggerholm A., Gronbaek K., Guldberg P. & Hokland P. 2000. Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. Eur. J. Hematol. 65: 109–113.

    Article  CAS  Google Scholar 

  • Ahlbom A., Day N., Feychting M., Roman E., Skinner J. & Dockerty J. 2000. A pooled analysis of magnetic fields and childhood leukaemia. Br. J. Cancer 83: 692–698.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allman D., Aster J.C. & Pear W.S. 2002. Notch signaling in hematopoiesis and early lymphocyte development. Immunol. Rev. 187: 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Allman D., Karnell F.G., Punt J.A., Bakkour S., Xu L., Myung P., Koretzky G.A., Pui J.C., Aster J.C., Pear W.S. 2001. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J. Exp. Med. 194: 99–106.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Apperley J.F. 2007a. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 8: 1018–1029.

    Article  PubMed  CAS  Google Scholar 

  • Apperley J.F. 2007b. Part II: management of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 8: 1116–1128.

    Article  PubMed  CAS  Google Scholar 

  • Arrandale J.M., Gore W.A., Rocks S., Ren J.M., Zhu J., Davis A., Livingston J.N. & Rabin U.D. 1996. Insulin signaling in mice expressing reduced levels of Syp. J. Biol. Chem. 271: 21353–21358.

    Article  PubMed  CAS  Google Scholar 

  • Aster J.C. 2005. Deregulated NOTCH signaling in acute T-cell lymphoblastic leukemia/lymphoma: new insights, questions, and opportunities. Int. J. Hematol. 82: 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Aster J.C., Bodnar N., Xu L., Karnell F., Milholland J.M., Maillard I., Histen G., Nam Y., Blacklow S.C. & Pear W.S. 2011. Notch ankyrin repeat domain variation influences leukemogenesis and Myc transactivation. Plos One 6: e25645.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baldwin A.S. 2001. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J. Clin. Invest. 107: 241–246.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barata J.T., Cardoso A.A. & Boussiotis V.A. 2005. Interleukin-7 in T-cell acute lymphoblastic leukemia: an extrinsic factor supporting leukemogenesis?. Leuk. Lymph. 46: 483–495.

    Article  CAS  Google Scholar 

  • Barista A., Joao T.B., Costa L.F., Sallan S.E., Carlesso N., Nadler L.M. & Cardoso A.A. 2004. mTOR as therapeutic target for T-cell leukemia: synergism with conventional cytotoxic drugs and signaling inhibitors. Blood 104: abstract 521.

    Google Scholar 

  • Beer-Hammer S., Zebedin E., Von Holleben M., Alferink J., Reis B., Dresing P., Degrandi D., Scheu A., Hirsch E., Sexl V., Pfeffer K., Nürnberg B. & Piekorz P.R. 2010. The catalytic PI3K isoforms p110Γ and p110δ contribute to B cell development and maintenance, transformation, and proliferation. J. Leukoc. Biol. 87: 1083–1095.

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar P.T. & Hay N. 2007. The two TORCs and Akt. Dev. Cell 12: 487–502.

    Article  PubMed  CAS  Google Scholar 

  • Biondi A., Valsecchi M.G., Seriu T., Aniello D.E., Willemse M.J., Fasching K., Pannunzio A., Gadner H., Schrappe M., Kamps W.A., Bartram C.R., Dongen J.J. & Panzer-Grümayer E.R. 2000. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia 14: 1939–1943.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet M., Loosveld M., Montpellier B., Navarro J.M., Quilichini B., Picard C., Cristofaro Di J., Bagnis C., Fossat C., Hernandez L., Mamessier E., Roulland S., Morgado E., Formisano-Tréziny C., Dik W.A., Langerak A.W., Prebet T., Vey N., Michel G., Gabert J., Soulier J., Macintyre E.A., Asnafi V., Payet-Bornet D. & Nadel B. 2011. Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. Blood 117: 6650–6659.

    Article  PubMed  CAS  Google Scholar 

  • Breit S., Stanulla M., Flohr T., Schrappe M., Ludwig W.D., Tolle G., Happich M., Muckenthaler M.U. & Kulozik A.E. 2006. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 108: 1151–1157.

    Article  PubMed  CAS  Google Scholar 

  • Cafferkey R., Young P.R., McLaughlin M.M., Bergsma D.J., Koltin Y., Sathe G.M., Faucette L., Eng W.K., Johnson R.K. & Livi G.P. 1993. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol. Cell. Biol. 13: 6012–6023.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carron C., Cormier F., Janin A., Lacronique V., Giovannini M. & Daniel M.T. 2000. TEL-JAK2 transgenic mice develop T-cell Leukemia. Blood 95: 3891–3899.

    PubMed  CAS  Google Scholar 

  • Cantley L.C. 2002. The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    Article  PubMed  CAS  Google Scholar 

  • Chan S. 2004. Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br. J. Cancer 91: 1420–1424.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chan S.M., Weng A.P., Tibshirani R., Aster J.C. & Utz P.J. 2007. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 110: 278–286.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chiaramonte R., Basile A., Tassi E., Calzavara E., Cecchinato V., Rossi V., Biondi A. & Comi P. 2005. A wide role for NOTCH1 signaling in acute leukemia. Cancer Lett. 219: 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Chiaretti S., Li X., Gentleman R., Vitale A., Vignetti M., Mandelli F., Ritz J. & Foa R. 2004. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 103: 2771–2778.

    Article  PubMed  CAS  Google Scholar 

  • Chiarini F., Fala F., Tazzari P.L., Ricci F., Astolfi A., Pession A., Pagliaro P., McCubrey J.A. & Martelli A.M. 2009. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option of T-cell acute lymphoblastic leukemia. Cancer Res. 69: 3520–3528.

    Article  PubMed  CAS  Google Scholar 

  • Chim C.S., Fung T.K., Cheung W.C., Liang R. & Kwong Y.L. 2004. SOCS-1 & SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/Stat pathway. Blood 103: 4630–4635.

    Article  PubMed  CAS  Google Scholar 

  • Crespo J.L. & Hall M.N. 2002. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 66: 579–591.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Darnell J.E. Jr. 1997. STATs and gene regulation. Science 277: 1630–1635.

    Article  PubMed  CAS  Google Scholar 

  • Darnell J.E. Jr., Kerr I.M. & Stark G.R. 1994. Jak-Stat pathways & transcription activation in response to IFNs & other extracellular signaling proteins. Science 26: 1415–1421.

    Article  Google Scholar 

  • Decker T., Sandherr M., Goetze K., Oelsner M., Ringshausen I. & Peschel C.A. 2008. Pilot trial of the mTOR (mammalian target of rapamycin) inhibitor RAD001 in patients with advanced B-CLL. Ann. Hematol. 88: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Deftos M.L., Huang E., Ojala E.W., Forbush K.A., Bevan M.J. 2000. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13: 73–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Demarest R.M., Ratti F. & Capobianco A.J. 2008. It’s T-ALL about notch. Oncogene 27: 5082–5091.

    Article  PubMed  CAS  Google Scholar 

  • Duncan A.W., Rattis F.M., DiMascio L.N., Congdon K.L., Pazianos G., Zhao C., Yoon K., Cook J.M., Willert K., Gaiano N. & Reya T. 2005. Integration of Notch andWnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6: 314–322.

    Article  PubMed  CAS  Google Scholar 

  • Fadden P., Haystead T.A. & Lawrence J.C. Jr. 1997. Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J. Biol. Chem. 272: 10240–10247.

    Article  PubMed  CAS  Google Scholar 

  • Faivre S., Kroemer G. & Raymond E. 2007. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov. 5: 671–688.

    Article  CAS  Google Scholar 

  • Fischer M., Bijman M., Molin D., Cormont F., Uyttenhove C., van Snick J., Sundstrom C., Enblad G. & Nilsson G. 2003. Increased serum levels of interleukin-9 correlate to negative prognostic factors in Hodgkin’s lymphoma. Leukemia 17: 2513–2516.

    Article  PubMed  CAS  Google Scholar 

  • Franstsve J., Schwaller J., Sternberg D.W., Kutok J. & Gilliland D.G. 2001. SOCS-1 Inhibits TEL-JAK2 mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome mediated degradation. Mol. Cell Biol. 21: 3547–3557.

    Article  Google Scholar 

  • Fu X.Y. & Zhang J.J. 1993. Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell 74: 1135–1145.

    Article  PubMed  CAS  Google Scholar 

  • Grabher C., Boehmer V.H. & Look A.T. 2006. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 6: 347–359.

    Article  PubMed  CAS  Google Scholar 

  • Grossman W.J., Verbsky J.W. & Yang L. 1999. Dysregulated myelopoiesis in mice lacking Jak3. Blood 94: 932–939.

    PubMed  CAS  Google Scholar 

  • Gouilleux G.V., Gouilleux F., Desaint C., Claisse J.F., Capoid J.C. & Delobel J. 1996. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 87: 1692–1697.

    PubMed  Google Scholar 

  • Gutierrez A., Dahlberg S.E., Neuberg D.S., Zhang J., Grebliunaite R., Sanda T., Protopopov A., Tosello V., Kutok J., Larson R.S., Borowitz M.J., Loh M.L., Ferrando A.A., Winter S.S., Mullighan C.G., Silverman L.B., Chin L., Hunger S.P., Sallan S.E. & Look A.T. 2010. Absence of biallelic TCR-Γ deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J. Clin. Oncol. 28: 3816–3823.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gutierrez A. & Look A.T. 2007. NOTCH and PI3K-AKT pathways intertwined. Cancer Cell 12: 411–413.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez A., Sanda T., Grebliunaite R., Carracedo A., Salmena L., Ahn Y., Dahlberg S., Neuberg D., Moreau L.A., Winter S.S., Larson R., Zhang J., Protopopov A., Chin L., Pandolfi P.P., Silverman L.B., Hunger S.P., Sallan S.E. & Look A.T. 2009. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114: 647–650.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Habas R. & Dawid I.B. 2005. Dishevelled & Wnt signaling: is the nucleus the final frontier?. J. Biol. 4: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harper J.A., Yuan J.S., Tan J.B., Visan I. & Guidos C.J. 2003. Notch signaling in development and disease. Dev. Biol. 64: 461–472.

    CAS  Google Scholar 

  • Hayward P., Brennan K., Sanders P., Balayo T., DasGupta R., Perrimon N. & Martinez Arias A. 2005. Notch modulates Wnt signaling by associating with Armadillo/b-catenin and regulating its transcriptional activity. Development 132: 1819–1830.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heesom K.J., Avison M.B., Diggle T.A. & Denton R.M. 1998. Insulin-stimulated kinase from rat fat cells that phosphorylates initiation factor 4E-binding protein 1 on the rapamycininsensitive site (serine-111). Biochem. J. 336: 39–48.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ho J.M.Y., Beattle B.K., Squire J.A., Frank D.A. & Barber D.L. 1999. Fusion of the ets transcription factor Tel to Jak2 results in constitutive Jak-Stat signaling. Blood 93: 4354–4364.

    PubMed  CAS  Google Scholar 

  • Hornakova T., Staerk J., Royer Y., Flex E., Tartaglia M., Constantinescu S.N., Knoops L. & Renauld J.C. 2009. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers. J. Biol. Chem. 284: 6773–6781.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hurlburt D.J., Kankel M.W., Lake R.J. & Tsakonas A.S. 2007. Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol. 19: 166–175.

    Article  CAS  Google Scholar 

  • Indraccolo S., Minuzzo S., Masiero M. & Amadori A. 2010. Ligand-driven activation of the notch pathway in T-ALL and solid tumors: why Not(ch)?. Cell Cycle 9: 80–85.

    Article  PubMed  CAS  Google Scholar 

  • Janes M.R., Limon J.J., So L., Chen J., Lim R.J., Chavez M.A., Vu C., Lilly M.B., Mallya S., Ong S.T., Konopleva M., Martin M.B., Ren P., Liu Y., Rommel C. & Fruman D.A. 2010. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat. Med. 16: 205–213.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jacinto E., Facchinetti V., Liu D., Soto N., Wei S., Jung S.Y., Huang Q., Qin J. & Su B. 2006. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127: 125–137.

    Article  PubMed  CAS  Google Scholar 

  • Jacinto E. & Hall M.N. 2003. Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell. Biol. 4: 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Kanamori E., Itoh M., Tojo N., Koyama T., Nara N. & Tohda S. 2012. Flow cytometric analysis of Notch1 and Jagged1 expression in normal blood cells and leukemia cells. Exp. Ther. Med. 4: 397–400.

    PubMed  PubMed Central  Google Scholar 

  • Kawaguchi I.N., Murohashi I., Nara N. & Tohda S. 2008. Promotion of the self-renewal capacity of human acute leukemia cells by Wnt3A. Anticancer Res. 28: 2701–2704.

    Google Scholar 

  • Kelleher K., Bean K., Clark S.C., Leung W.Y., Yang-Feng T.L., Chen J.W., Lin P.F., Luo W. & Yang Y.C. 1991. Human interleukin-9: genomic sequence, chromosomal location, and sequences essential for its expression in human T-cell leukemia virus (HTLV)-I-transformed human T cells. Blood 77: 1436–1441.

    PubMed  CAS  Google Scholar 

  • Khan N.I., Bradstock K.F. & Bendall L.J. 2007. Activation of Wnt/β catenin pathway mediates and survival in B-cell progenitor acute lymphoblastic leukemia. Br. J. Haematol. 138: 338–348.

    Article  PubMed  CAS  Google Scholar 

  • Kharas M.G., Janes M.R., Scarfone V.M., Lilly M.B., Knight Z.A., Shokat K.M. & Fruman D.A. 2008. Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCRABL+ leukemia cells. J. Clin. Invest. 118: 3038–3050.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim D.H., Sarbassov D., Ali S.M., Latek R.R., Guntur K.V., Erdjument B.H., Tempst P. & Sabatini D.M. 2003. GbL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11: 895–904.

    Article  PubMed  CAS  Google Scholar 

  • Klinakis A., Szabolcs M., Politi K., Kiaris H., Artavanis T.S. & Efstratiadis A. 2006. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc. Natl. Acad. Sci. USA 102: 9262–9267.

    Article  CAS  Google Scholar 

  • Kunz J., Henriquez R., Schneider U., Deuter R.M., Movva N.R. & Hall M.N. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585–596.

    Article  PubMed  CAS  Google Scholar 

  • Lacronique V., Boureux A. & Valle V.D. 1997. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278: 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Lee K., Nam K.T., Cho S.H., Gudapati P., Hwang Y., Park D.S., Potter R., Chen J., Volanakis E. & Boothby M. 2012. Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia. J. Exp. Med. 209: 713–728.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leong K.G. & Karsan A. 2006. Recent insights into the role of Notch signaling in tumorigenesis. Blood 107: 2223–2233.

    Article  PubMed  CAS  Google Scholar 

  • Lewis H.D., Leveride M., Strack P.R., Haldon C.D., O’Neil J., Kim H., Madin A., Hannam J.C., Look A.T., Kohl N., Draetta G., Harrison T., Kerby J.A., Shearman M.S. & Beher D. 2007. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem. Biol. 14: 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Li A., Goldwasser M.A., Zhou J., Armstrong S.A., Wang H., Dalton V., Fletcher J.A., Sallan S.E., Silverman L.B. & Gribben J.G. 2005. Distinctive IGH gene segment usage and minimal residual disease detection in infant acute lymphoblastic leukaemias. Br. J. Haematol. 131: 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Lo T.C., Barnhill L.M., Kim Y., Nakae E.A., Yu A.L. & Diccianni M.B. 2009. Inactivation of SHIP1 in T-cell acute lymphoblastic leukemia due to mutation and extensive alternative splicing. Leuk. Res. 33: 1562–1566.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Logan C.Y. & Nusse R. 2004. The Wnt signaling pathway in development & disease. Annu. Rev. Cell. Dev. Biol. 20: 781–810.

    Article  PubMed  CAS  Google Scholar 

  • Long X., Ortiz-Vega S., Lin Y. & Avruch J. 2005. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 280: 23433–23436.

    Article  PubMed  CAS  Google Scholar 

  • Luo J.M., Lin Z.L., Hao H.L., Wang F.X., Dong Z.R. & Ohno R. 2004. Mutation analysis of SHIP gene in acute leukemia. Zhongguo Shin Yan Xue Ye Xue Za Zhi 12: 420–426.

    CAS  Google Scholar 

  • Mansour M.R., Duke V., Foroni L., Patel B., Allen C.G., Ancliff P.J., Gale R.E. & Linch D.C. 2007. Notch-1 mutations are secondary events in some patients with T-cell acute lymphoblastic leukemia. Clin. Cancer Res. 13: 6964–6969.

    Article  PubMed  CAS  Google Scholar 

  • Mansour M.R., Linch D.C., Foroni L., Goldstone A.H. & Gale R.E. 2006. High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 20: 537–539.

    Article  PubMed  CAS  Google Scholar 

  • Martin D.E., Soulard A. & Hall M.N. 2004. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119: 969–979.

    Article  PubMed  CAS  Google Scholar 

  • Maser R.S., Choudhury B., Campbell P.J., Feng B., Wong K.K., Protopopov A., O’Neil J., Gutierrez A., Ivanova E., Perna I., Lin E., Mani V., Jiang S., McNamara K., Zaghlul S., Edkins S., Stevens C., Brennan C., Martin E.S., Wiedemeyer R., Kabbarah O., Nogueira C., Histen G., Aster J., Mansour M., Duke V., Foroni L., Fielding A.K., Goldstone A.H., Rowe J.M., Wang Y.A., Look A.T., Stratton M.R., Chin L., Futreal P.A. & DePinho R.A. 2007. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447: 966–971.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Medyouf H., Gao X., Armstrong F., Gusscott S., Liu Q., Gedman A.L., Matherly L.H., Schultz K.R., Pflumio F., You M.J. & Weng A.P. 2010. Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. Blood 115: 1175–1184.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meijer A.J. & Codogno P. Regulation and role of autophagy in mammalian cells. Int. J. Biochem. Cell. Biol. 36: 2445–2462.

  • Mellor H.R. & Callaghan R. 2008. Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology 81: 275–300.

    Article  PubMed  CAS  Google Scholar 

  • Merz H., Houssiau F.A., Orscheschek K., Renauld J.C., Fliedner A., Herin M., Noel H., Kadin M., Mueller-Hermelink H.K., Van Snick J. & Feller A.C. 1991. Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin’s disease and large cell anaplastic lymphoma. Blood 78: 1311–1317.

    PubMed  CAS  Google Scholar 

  • Mullighan C.G. 2012. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin. Invest. 122: 3407–3415.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mungamuri S.K., Yang X., Thor A.D. & Somasundaram K. 2006. Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res. 66: 4715–4724.

    Article  PubMed  CAS  Google Scholar 

  • Neri L.M., Cani A., Martelli A.M., Simioni C., Junghanss C., Tabellini G., Ricci F., Tazzari P.L., Pagliaro P., McCubrey J.A. & Capitani S. 2013. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 28: 739–748.

    Article  PubMed  CAS  Google Scholar 

  • Neshat M.S., Mellinghoff I.K., Tran C., Stiles B., Thomas G., Petersen R., Frost P., Gibbons J.J., Wu H. & Sawyers C.L. 2001. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA 98: 10314–10319.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Neubaur H., Cumano A., Muller M., Wu H., Huff S.U. & Pfeffer K. 1998. Jak2 deficiency defines an essential development check-point in definitive hematopoiesis. Cell 93: 397–409.

    Article  Google Scholar 

  • Nosaka T., Deursen J.M. & Tripp R.A. 1995. Defective lymphoid development in mice lacking Jak3. Science 270: 800–802.

    Article  PubMed  CAS  Google Scholar 

  • Nygren M.K., Dosen G., Hystad M.E., Stubberud H., Funderud S. & Rian E. 2007. Wnt3A activates canonical Wnt signaling in acute lymphoblastic leukemia (ALL) cells and inhibits the proliferation of B-ALL cell line. Br. J. Haematol. 136: 400–413.

    Article  PubMed  CAS  Google Scholar 

  • Oldham S. & Hafen E. 2003. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell. Biol. 13: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • O’Neil J., Grim J., Strack P., Rao S., Tibbitts D., Winter C., Hardwick J., Welcker M., Meijerink J.P., Pieters R., Draetta G., Sears R., Clurman B.E. & Look A.T. 2007. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J. Exp. Med. 204: 1813–1824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Shea J.J., Gardina M. & Screiber R.D. 2002. Cytokine signaling in 2002: new surprises in the Jak-Stat pathway. Cell 109: S121–S131.

    Article  PubMed  Google Scholar 

  • Pahl H.L. 1999. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18: 6853–6866.

    Article  PubMed  CAS  Google Scholar 

  • Palomero T., Dominguez M., Ferrando A.A. 2008. The role of the PTEN/AKT pathway in NOTCH-1 induced leukemia. Cell Cycle 7: 965–970.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palomero T. & Ferrando A. 2009. Therapeutic targeting of NOTCH1 signaling in T-cell acute lymphoblastic leukemia. Clin. Lymph. Myeloma 9: S205–S210.

    Article  CAS  Google Scholar 

  • Palomero T., Lim W.K., Odom D.T., Sulis M.L., Real P.J., Margolin A., Barnes K.C., O’Neil J., Neuberg D., Weng A.P., Aster J.C., Sigaux F., Soulier J., Look A.T., Young R.A., Califano A. & Ferrando A.A. 2006. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl. Acad. Sci. USA 103: 18261–18266.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palomero T., McKenna K., O-Neil J., Galinsky I., Stone R., Suzukawa K., Stiakaki E., Kalmanti M., Fox E.A., Caligiuri M.A., Aster J.C., Look A.T. & Ferrando A.A. 2006. Activating mutations in NOTCH1 in acute myeloid leukemia and lineage switch leukemias. Leukemia 20: 1963–1966.

    Article  PubMed  CAS  Google Scholar 

  • Palomero T., Sulis M.L., Cortina M., Real P.J., Barnes K., Ciofani M., Caparros E., Buteau J., Brown K., Perkins S.L., Bhagat G., Agarwal A.M., Basso G., Castillo M., Nagase S., Cordon C.C., Parsons R., Zuniga-Pflucker J.C., Dominguez M. & Ferrando A.A. 2007. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 12: 1203–1210.

    Article  CAS  Google Scholar 

  • Parganas E., Wang D. & Stravopodis D. 1998. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93: 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Park S.Y., Saijo K. & Tkahashi T. 1995. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3: 771–782.

    Article  PubMed  CAS  Google Scholar 

  • Pear W.S. 1996. Exclusive development of T cell neoplasms in mice transplanted with bone marrow. J. Exp. Med. 183: 2283–2291.

    Article  PubMed  CAS  Google Scholar 

  • Petropoulos K., Arseni N., Schessl C., Stadler C.R., Rawat V.P., Deshpande A.J., Heilmeier B., Hiddemann W., Quintanilla M.L., Bohlander S.K., Feuring B.M. & Buske C. 2008. A novel role for Lef-1, a central transcription mediator of Wnt signaling in leukemogenesis. J. Exp. Med. 205: 515–522.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pui C.H., Carroll W.L., Meshinchi S. & Arceci R.J. 2011. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J. Clin. Oncol. 29: 551–565.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pui C.H. & Evans W.E. 1998. Acute lymphoblastic leukemia. New Engl. J. Med. 339: 605–615.

    Article  PubMed  CAS  Google Scholar 

  • Pui C.H., Robison L.L. & Look A.T. 2008. Acute lymphoblastic leukaemia. Lancet 371: 1030–1043.

    Article  PubMed  CAS  Google Scholar 

  • Pui C.H., Sandlund J.T., Pei D., Campana D., Rivera G.K., Ribeiro R.C., Rubnitz J.E., Razzouk B.I., Howard S.C., Hudson M.M., Cheng C., Kun L.E., Raimondi S.C., Behm F.G., Downing J.R., Relling M.V. & Evans W.E. 2004. Improved outcome for children with acute lymphoblastic leukemia: results of total therapy study XIIIB at St. Jude Children’s research Hospital. Blood 104: 2690–2696.

    Article  PubMed  CAS  Google Scholar 

  • Pui J.C., Allman D., Xu L., Rocco D.S., Karnell F.G., Bakkour S., Lee J.Y., Kadesch T., Hardy R.R., Aster J.C. & Pear W.S. 1999. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11: 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Qazi S. & Uckun F.M. 2010. Gene expression profiles of infant acute lymphoblastic leukaemia and its prognostically distinct subsets. Br. J. Haematol. 149: 865–873.

    Article  PubMed  CAS  Google Scholar 

  • Radtke F.A., Wilson G., Stark M., Bauer & Meerwijk J.V. 1999. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10: 547–558.

    Article  PubMed  CAS  Google Scholar 

  • Radtke F., Schweisguth F. & Pear W. 2005. The Notch ‘gospel’. EMBO Rep. 6: 1120–1125.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rafik T., Isabelle L., Richard L.B., Sophie O., Juan C.Z. & Claude P. 2005. T-cell generation by lymph node resident progenitor cells. Blood 106: 193–200.

    Article  CAS  Google Scholar 

  • Rakowski L.A., Garagiola D.D., Li C.M., Decker M., Caruso S., Jones M., Kuick R., Cierpicki T., Maillard I. & Chiang M.Y. 2013. Convergence of the ZMIZ1 and NOTCH1 pathways at C-MYC in acute T lymphoblastic leukemias. Cancer Res. 73: 930–941.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rakowski L.A., Lehotzky E.A. & Chiang M.Y. 2011. Transient responses to NOTCH and TLX1/HOX11 inhibition in Tcell acute lymphoblastic leukemia/lymphoma. PLoS One 6: e16761.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rao S.S., O’Neil J., Liberator C.D., Hardwick J.S., Dai X., Zhang T., Tyminski E., Yuan J., Kohl N.E., Richon V.M., Van der Ploeg L.H., Carroll P.M., Draetta G.F., Look A.T., Strack P.R. & Winter C.G. 2009. Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res. 69: 3060–3068.

    Article  PubMed  CAS  Google Scholar 

  • Reya T. & Clevers H. 2005. Wnt signaling in stem cells and cancer. Nature 434: 843–850.

    Article  PubMed  CAS  Google Scholar 

  • Reya T., Duncan A.W., Ailles L., Domen J., Scherer D.C., Willert K., Hintz L., Nusse R. & Weissman I.L. 2003. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423: 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Riz I., Hawley T.S., Luu T.V., Lee N.H. & Hawley R.G. 2010. TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells. Mol. Cancer 9: 181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodig S.J., Payne E.G., Degar B.A., Rollins B., Feldman A.L., Jaffe E.S., Androkites A., Silverman L.B., Longtine J.A., Kutok J.L., Fleming M.D. & Aster J.C. 2008. Aggressive Langerhans cell histiocytosis following T-ALL: clonally related neoplasms with persistent expression of constitutively active NOTCH1. Am. J. Hematol. 83: 116–121.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini D.M., Erdjument B.H., Lui M., Tempst P. & Snyder S.H. 1994. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Sakai A., Thieblemont C., Wellmann A., Jaffe E.S. & Raffeld M. 1998. PTEN gene alterations in lymphoid neoplasms. Blood 92: 3410–3415.

    PubMed  CAS  Google Scholar 

  • Sarbassov D.D., Ali S.M., Kim D.H., Guertin D.A., Latek R.R., Hediye E.B., Tempst P. & Sabatini D.M. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14: 1296–1302.

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov D.D., Guertin D.A., Ali S.M. & Sabatini D.M. 2005. Phosphorylation and regulation of Akt/PKB by the rictormTOR complex. Science 307: 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  • Saxton T.M., Henkemeyer M., Gasca S., Shen R., Rossi D.J., Shalaby F., Feng G.S. & Pawson T. 1996. Abnormal mesoderm patterning in mouse embryos mutant for The SH2 tyrosine phosphatase Shp-2. EMBO J. 16: 2352–2364.

    Article  Google Scholar 

  • Schalm S.S. & Blenis J. 2002. Identification of a conserved motif required for mTOR signaling. Curr. Biol. 12: 632–639.

    Article  PubMed  CAS  Google Scholar 

  • Schwaller J., Frantsve J. & Aster J. 1998. Transformation of hematopoietic cell lines to growth factor independent induction of a fatal myelo & lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion gene. EMBO J. 17: 5321–5333.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sharma V.M., Draheim K.M. & Kelliher M.A. 2007. The Notch1/c-Myc pathway in T cell leukemia. Cell Cycle 6: 927–930.

    Article  PubMed  CAS  Google Scholar 

  • Shaw R.J. & Cantley L.C. 2006. Ras, PI(3)K and mTOR signaling controls tumour cell growth. Nature 441: 424–430.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd C., Banerjee L., Cheung C.W., Mansour M.R., Jenkinson S., Gale R.E. & Khwaja A. 2013. PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia 27: 650–660.

    Article  PubMed  CAS  Google Scholar 

  • Shuai K., Horvath C.M., Huang L.H., Qureshi S.A., Cowburn D. & Darnell J.E. Jr. 1994. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76: 821–828.

    Article  PubMed  CAS  Google Scholar 

  • Shuai K., Liao J. & Song M.M. 1996. Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol. Cell Biol. 16: 4932–4941.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Silva A., Yunes J.A., Cardoso B.A., Martins L.R., Jotta P.Y., Abecasis M., Nowill A.E., Leslie N.R., Cardoso A.A. & Barata J.T. 2008. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J. Clin. Invest. 118: 3762–3774.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Srinivasan L., Sasaki Y., Calado D.P., Zhang B., Paik J.H., De-Pinho, R.A. & Kutok J.L. 2009. PI3 kinase signals BCRdependent mature B cell survival. Cell 139: 573–586.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Staal F.J.T., Jacques J.M., Dongen V. & Anton W.L. 2007. Novel insights into the development of T-cell acute lymphoblastic leukemia. Curr. Hematol. Malig. Rep. 2: 176–182.

    Article  PubMed  Google Scholar 

  • Sun S.Y., Rosenberg L.M., Wang X., Zhou Z., Yue P. & Fu H. 2005. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65: 7052–7058.

    Article  PubMed  CAS  Google Scholar 

  • Tazzari P.L., Cappellini A., Ricci F., Papa V., Evangelisti C. & Grapfone T. 2007. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 21: 427–438.

    Article  PubMed  CAS  Google Scholar 

  • Teachey D.T., Grupp S.A. & Brown VI. 2009. Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br. J. Haematol. 145: 569–580.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tzoneva G. & Ferrando A.A. 2012. Recent advances on NOTCH signaling in T-ALL. Curr. Top. Microbiol. Immunol. 360: 163–182.

    PubMed  CAS  Google Scholar 

  • Weerkamp F., van Dongen J.J. & Staal F.J. 2006. Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 20: 1197–1205.

    Article  PubMed  CAS  Google Scholar 

  • Weng A.P. & Aster J.C. 2004. Multiple niches for Notch in cancer: context is everything. Curr. Opin. Genet. Dev. 14: 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Weng A.P., Ferrando A.A., Lee W., Morris J.P., Silverman L.B., Sanchez-Irizarry C., Blacklow S.C., Look A.T. & Aster J.C. 2004. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    Article  PubMed  CAS  Google Scholar 

  • Weng A.P., Millholland J.M., Yashiro-Ohtani Y., Arcangeli M.L., Lau A., Wai C., Del B.C., Rodriguez C.G., Sai H., Tobias J., Li Y., Wolfe M.S., Shachaf C., Felsher D., Blacklow S.C., Pear W.S. & Aster J.C. 2006. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20: 2096–2109.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Willert K., Brown J.D., Danenberg E., Duncan A.W., Weissman I.L., Reya T., Yates J.R. 3rd & Nusse R. 2003. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423: 448–452.

    Article  PubMed  CAS  Google Scholar 

  • Wodarz A. & Nusse R. 1998. Mechanism of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol. 14: 59–88.

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger S., Loewith R. & Hall M.N. 2006. TOR signaling in growth and metabolism. Cell 124: 471–484.

    Article  PubMed  CAS  Google Scholar 

  • Xu X., Sun Y.L. & Hoey T. 1996. Cooperative DNA binding and sequence-selective recognition conferred by the STAT aminoterminal domain. Science 273: 794–797.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T.P. 2001. Head or tail: Wnt & anterior-posterior patterning. Curr. Biol. 11: 713–724.

    Article  Google Scholar 

  • Yatim A., Benne C., Sobhian B., Laurent C.S., Deas O., Judde J.G., Lelievre J.D., Levy Y. & Benkirane M. 2012. NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol. Cell 48: 445–458.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yilmez O.H., Valdez R., Theisen B.K., Guow Ferguson D.O. & Wu H. 2006. PTEN dependence distinguishes haematopoietic stem cells from leukaemia initiating cells. Nature 441: 475–482.

    Article  CAS  Google Scholar 

  • Yonezawa K., Yoshino K.I., Tokunaga C. & Hara K. 2004. Kinase activities associated with mTOR. Curr. Top. Microbiol. Immunol. 279: 271–282.

    PubMed  CAS  Google Scholar 

  • Zhang J., Gindley J.C., Yin T., Jayasinghe S., He X.C. & Ross J.T. 2006. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441: 518–522.

    Article  PubMed  CAS  Google Scholar 

  • Zweidler-McKay P.A. & Pear W.S. 2004. Notch and T cell malignancy. Semin. Cancer Biol. 14: 329–340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, P.K., Paul, M. & Paul, S. Role of different aberrant cell signalling pathways prevalent in acute lymphoblastic leukemia. Biologia 69, 1097–1107 (2014). https://doi.org/10.2478/s11756-014-0428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0428-y

Key words

Navigation