Skip to main content
Log in

Evolutionary aspects of a new MyoD gene in amphioxus (Branchiostoma belcheri) and its promoter specificity in skeletal and cardiac muscles

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Vertebrate MyoD family of transcription factors contains four members including MyoD, Myf5, Myogenin and MRF4. These myogenic regulatory factors (MRFs) play key roles in regulating skeletal muscle development and growth. Evolutionary analysis suggests that the four vertebrate MRF genes were derived by gene duplications from a single ancestral gene during chordate evolution. Better understanding of the structure and regulation of MyoD expression in amphioxus Branchiostoma belcheri may provide insight into the evolutionary history of myogenic gene duplications because of the unique position of amphioxus in evolution. We report here that isolation and characterization of a new MyoD gene, AmphiMyoD, in B. belcheri. Sequence analysis revealed that the AmphiMyoD is more closely related to myogenic transcription factors in invertebrates and vertebrates compared with the previously identified three MyoD like genes in amphioxus, suggesting that the AmphiMyoD might be the closest relative of the ancestral myogenic gene. To determine if the AmphiMyoD gene promoter controls muscle-specific expression, the AmphiMyoD promoter was linked with the green fluorescence protein (GFP) reporter and the construct was microinjected into zebrafish embryos for transient expression assay. AmphiMyoD promoter directed skeletal muscle-specific GFP expression in zebrafish embryos. In addition, it also drove GFP expression in cardiac muscles of the injected embryos, but not in other non-muscle tissues. These data demonstrated that the AmphiMyoD promoter contained regulatory elements for skeletal and cardiac muscle-specific expression. Moreover, the regulatory element(s) could function across species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bHLH:

basic helix-loop-helix domain

GFP:

green fluorescent protein

hpf:

hours post fertilization

MRF:

myogenic regulatory factor

PBS:

phosphate buffered saline

PBST:

0.1% Tween-20 in 1×PBS

RACE:

rapid amplification of cDNA ends

UTR:

untranslated region

References

  • Araki I., Saiga H., Makabe K.W. & Satoh N. 1994. Expression of AMD1, a gene for a MyoD1-related factor in the ascidian Halocynthia roretzi. Roux’s. Arch. Dev. Biol. 203: 320–327.

    Article  CAS  Google Scholar 

  • Araki I., Terazawa K. & Satoh N. 1996. Duplication of an amphioxus myogenic bHLH gene is independent of vertebrate myogenic bHLH gene duplication. Gene 171: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Atchley W.R., Fitch W.M. & Bronner-Fraser M. 1994. Molecular evolution of the MyoD family of transcription factors. Proc. Natl. Acad. Sci. USA 91: 11522–11526.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beach R.L., Seo P. & Venuti J.M. 1999. Expression of the sea urchin MyoD homologue, SUM1, is not restricted to the myogenic lineage during embryogenesis. Mech. Dev. 86: 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Blackwell T. K. & Weintraub H. 1990. Differences and similarities in DNA-binding preference of MyoD and E2A protein complexes revealed by binding site selection. Science 250: 1104–1110.

    Article  PubMed  CAS  Google Scholar 

  • Braun T., Bober E., Rudnicki M.A., Jaenisch R. & Arnold H.H. 1994. MyoD expression marks the onset of skeletal myogenesis in homouzygous Myf5 mutant mice. Development 120: 3083–3092.

    PubMed  CAS  Google Scholar 

  • Braun T., Rudnicki M.A., Arnold H.H. & Jaenisch R. 1992. Targeted inactivation of the mouse regulatory gene Myf5 results in abnormal distal rib development and early postnatal death in homozygous mouse mutants. Cell 71: 369–382.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y.H., Lee W.C., Liu C.F. & Tsai H.J. 2001. Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis 29: 22–35.

    Article  PubMed  CAS  Google Scholar 

  • Du S.J. & Dienhart M. 2001. The zebrafish tiggy-winkle hedgehog promoter directs notochord and floor plate GFP expression in transgenic zebrafish embryos. Dev. Dyn. 222: 655–666.

    Article  PubMed  CAS  Google Scholar 

  • Du S.J., Gao J. & Anyangwe V. 2003. Muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. Comp. Biochem. Physiol. B Biochem. Mol. Biol.134: 123–134.

    Article  PubMed  Google Scholar 

  • Ettensohn C.A. & Ingersoll E.P. 1992. Morphogenesis of the sea urchin, pp. 210–230. In: Rossamundo E.F. & Alexander S. (eds), Morphogenesis: an Analysis of the Development of Biological Form. Marcel Dekker, New York.

    Google Scholar 

  • Garcia-Fernandez J. & Holland P.W. 1994. Archetypal organization of the amphioxus Hox gene cluster. Nature 370: 563–566.

    Article  PubMed  CAS  Google Scholar 

  • Hasty P., Braddley A., Morris J.H., Edmondson D.G., Venuti J.M., Olson E.N. & Klein W.H. 1993. Muscle deficiency and neonatal death in mice with targeted mutation in the myogenin gene. Nature 364: 501–506.

    Article  PubMed  CAS  Google Scholar 

  • Holland P.W. 1999. Gene duplication: past, present and future. Semin. Cell Dev. Biol. 10: 541–547.

    Article  PubMed  CAS  Google Scholar 

  • Karabinos A. & Bhattacharya D. 2000. Molecular evolution of calmodulin and calmodulin-like genes in the cephalochordate Branchiostoma. J. Mol. Evol. 51: 141–148.

    PubMed  CAS  Google Scholar 

  • Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B. & Schilling T.F. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203: 253–310.

    Article  PubMed  CAS  Google Scholar 

  • Krause M., Fire A., Harrison S.W., Priess J. & Weintraub H. 1990. CeMyoD accumulation defines the body wall muscle cell fate during C. elegans embryogenesis. Cell 63: 907–919.

    Article  PubMed  CAS  Google Scholar 

  • Kusakabe R., Kusakabe T., Satoh N., Holland N.D. & Holland L.Z. 1997. Differential gene expression and intracellular mRNA localization of amphioxus actin isoforms throughout development: implications for conserved mechanisms of chordate development. Dev. Genes Evol. 207: 203–215.

    Article  CAS  Google Scholar 

  • Meedel T.H., Farmer S.C. & Lee J.J. 1997. The single MyoD family gene of Ciona intestinalis encodes two differentially expressed proteins: implications for the evolution of chordate muscle gene regulation. Development 124: 1711–1721.

    PubMed  CAS  Google Scholar 

  • Megeney L.A. & Rudnicki M.A. 1995. Determination versus differentiation and the MyoD family of transfactors. Biochem. Cell Biol. 73: 723–732.

    Article  PubMed  CAS  Google Scholar 

  • Meyer A. & Schartl M. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11: 699–704.

    Article  PubMed  CAS  Google Scholar 

  • Michelson A.M., Abmayr S.M., Bate M., Arias A.M. & Maniatis T. 1990. Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos. Genes Dev. 4: 2086–2097.

    Article  PubMed  CAS  Google Scholar 

  • Minguillon C., Ferrier D.E., Cebrian C. & Garcia-Fernandez J. 2002. Gene duplications in the prototypical cephalochordate amphioxus. Gene 287: 121–128.

    Article  PubMed  CAS  Google Scholar 

  • Muller P., Seipel K., Yanze N., Reber-Müller S., Streitwolf-Engel R., Stierwald M., Spring J. & Schmid V. 2003. Evolutionary aspects of developmentally regulated helix-loop-helix transcription factors in striated muscle of jellyfish. Dev. Biol. 255: 216–229.

    Article  PubMed  CAS  Google Scholar 

  • Murre C., McCaw P. S. & Baltimore D. 1989. A new DNA binding and dimerization motif in immunoglobulin echancer binding, daughterless, MyoD and myc proteins. Cell 56: 777–783.

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima Y., Hanaoka K., Hayasaka M., Esumi E., Li S., Nonaka I. & Nabeshima Y. 1993. Myogenin gene disruption results in perinatal lethality because of severs muscle defect. Nature 364: 532–535.

    Article  PubMed  CAS  Google Scholar 

  • Nohara M., Nishida M., Yamaguchi T., Tomiyama M., Zhang P., Yokoyama H., Manthacitra V. & Nishikawa T. 2001. Mitochondrial DNA variation and genetic relationships of Branchiostoma species from Pacific and Atlantic Oceans. Zool. Sci. 18: 453–454.

    Google Scholar 

  • Ohno S. 1970. Evolution by Gene Duplication. Springer-Verlag, Heidelberg.

    Book  Google Scholar 

  • Ono-Koyanagi K., Suga H., Katoh K. & Miyata T. 2000. Protein tyrosine phosphatases from amphioxus, hagfish, and ray: divergence of tissue-specific isoform genes in the early evolution of vertebrates. J. Mol. Evol. 50: 302–311.

    PubMed  CAS  Google Scholar 

  • Rudnicki M.A., Braun T., Hinuma S. & Jaenisch R. 1992. Inactivation of MyoD in mice leads to upregulation of the myogenic HLH gene Myf5 and results in apparently normal muscle development. Cell 71: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Rudinicki M.A. & Janeisch R. 1995.The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17: 203–209.

    Article  Google Scholar 

  • Rudnicki M.A., Schnegelsberg P.N., Stead R.H., Braun T., Arnold H.H. & Jaenisch R. 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75: 1351–1359.

    Article  PubMed  CAS  Google Scholar 

  • Schubert M., Meulemans D., Bronner-Fraser M., Holland L.Z. & Holland N.D. 2003. Differential mesodermal expression of two amphioxus MyoD family members (AmphiMRF1 and AmphiMRF2). Gene Expr. Patterns 3: 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Shimeld S. M. 1997. Characterization of amphioxus HNF-3 genes: conserved expression in the notochord and floor plate. Dev. Biol. 183: 74–85.

    Article  PubMed  CAS  Google Scholar 

  • Suga H., Hoshiyama D., Kuraku S., Katoh K., Kubokawa K. & Miyata T. 1999. Protein tyrosine kinase cDNAs from amphioxus, hagfish, and lamprey: isoform duplications around the divergence of cyclostomes and gnathostomes. J. Mol. Evol. 49: 601–608.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland D., McClellan J. S., Milner D., Soong W., Axon N., Sanders M., Hester A., Kao Y.H., Poczatek T., Routt S. & Pezzementi L. 1997. Two cholinesterase activities and genes are present in amphioxus. J. Exp. Zool. 277: 213–229.

    Article  PubMed  CAS  Google Scholar 

  • Tan X. & Du S.J. 2002. Differential expression of two Myod genes in fast and slow muscles of gilthead seabream (Sparus aurata). Dev. Genes Evol. 212: 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Venuti J.M., Goldberg L., Chakraborty T., Olson E.N. & Klein W.H. 1991. A myogenic factor from sea urchin embryos capable of programming muscle differentiation in mammalian cells. Proc. Natl. Acad. Sci. USA 88: 6219–6223.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Venuti J., Morris J.H., Vivian J.L., Olson E.N. & Klein W.H. 1995. Myogenin is required for late but not early aspects of myogenesis during mouse development. J. Cell Biol. 128: 563–576.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y., Schnegelsberg P.N., Dausman J. & Jaenisch R. 1996. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Nature 379: 823–825.

    Article  PubMed  CAS  Google Scholar 

  • Westerfiled M. 1995. The Zebrafish Book. Eugene, University of Oregon Press

    Google Scholar 

  • Westerfield M., Wegner J., Jegalian B.G., DeRobertis E.M. & Püschel A.W. 1992. Specific activation of mammalian Hox promoters in mosaic transgenic zebrafish. Genes Dev. 6: 591–598.

    Article  PubMed  CAS  Google Scholar 

  • Yuan J., Zhang S., Liu Z., Luan Z. & Hu G. 2003. Cloning and phylogenetic analysis of an amphioxus myogenic bHLH gene AmphiMDF. Biochem. Biophys. Res. Commun. 301: 960–967.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xungang Tan or Shao Jun Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Zhang, P.J. & Du, S.J. Evolutionary aspects of a new MyoD gene in amphioxus (Branchiostoma belcheri) and its promoter specificity in skeletal and cardiac muscles. Biologia 69, 1210–1221 (2014). https://doi.org/10.2478/s11756-014-0427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0427-z

Key words

Navigation