Skip to main content
Log in

Littoral macroinvertebrates of acidified lakes in the Bohemian Forest

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Mountain lakes in the Bohemian Forest, on both the Czech and German sides, were atmospherically acidified mainly in the 1960s–1980s and have since been recovering from acidification. In 2007, we performed the first complete study on littoral macroinvertebrates in all eight lakes. The goals of the study were to 1) compare macroinvertebrates in the lakes during the process of recovery and 2) investigate relations between the occurrence of taxa and water chemistry. Lake water pH varied from 4.6 to 5.7, concentrations of dissolved reactive Al and labile Al ranged from 118–601 and 11–470 μg L−1, respectively, and DOC concentrations were < 6 mg L−1. Altogether 73 taxa were identified from all lakes; a positive relationship was found between pH and the number of macroinvertebrate taxa. The highest number of taxa was found in the least acidic lakes Laka and Grosser Arbersee, including the mollusk Pisidium casertanum. In contrast, the lowest diversity was found in the most acidified Čertovo jezero. Cluster analyses of macroinvertebrates and water chemistry suggested pH as the key factor influencing the occurrence of macroinvertebrate taxa. An interesting finding was the occurrence of the boreo-montane water beetle Nebrioporus assimilis in Prášilské record of this species in the Czech Republic since 1960.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANC :

acid neutralizing capacity

DOC :

dissolved organic carbon

L-Al :

labile aluminium

N-Al :

non-labile aluminium

R-Al :

reactive aluminium

TP :

total phosphorus

References

  • Bitušík P. & Svitok M. 2006. Structure of chironomid assemblages along environmental and geographical gradients in the Bohemian Forest lakes (Central Europe): An exploratory analysis. Biologia 61(Suppl. 20): S467–S476. DOI: 10.2478/s11756-007-0063-y

    Article  Google Scholar 

  • Boukal D.S., Boukal M., Fikáček M., Hájek J., Klečka J., Skalický S., Šťastný J. & Trávníček D. 2007. Katalog vodních brouků Český republiky [Catalogue of water beetles of the Czech Republic]. Klapalekiana 43(Suppl.): 1–289.

    Google Scholar 

  • Boukal D.S., Fikáček M., Hájek J., Konvička O., Křivan V., Sejkora R., Skalicky S., Straka M., Sychra J. & Trávníček D. 2012. Nové a zajímavé nálezy vodních brouků z území České republiky (Coleoptera: Sphaeriusidae, Dytiscidae, Helophoridae, Hydrophilidae, Georissidae, Hydraenidae, Scirtidae, Elmidae, Dryopidae, Limnichidae, Heteroceridae) [New and interesting records of water beetles from the Czech Republic (Coleoptera: Sphaeriusidae, Dytiscidae, Helophoridae, Hydrophilidae, Georissidae, Hydraenidae, Scirtidae, Elmidae, Dryopidae, Limnichidae, Heteroceridae]. Klapalekiana 48(1–2): 1–21.

    Google Scholar 

  • Braukmann U. & Biss R. 2004. Conceptual study — An improved method to assess acidification in German streams by using benthic macroinvertebrates. Limnologica — Ecology and Management of Inland Waters 34(4): 433–450. DOI: 10.1016/S0075-9511(04)80011-2

    Article  CAS  Google Scholar 

  • Dangles O. & Guérold J. 2000. Structural and functional responses of benthic macroinvertebrates to acid precipitation in two forested headwater streams (Vosges Mountains, northeastern France). Hydrobiologia 418(1): 25–31. DOI: 10.1023/A:1003805902634

    Article  Google Scholar 

  • Dougan W.K. & Wilson A.L. 1974. The absorptiometric determination of aluminium in water. A comparison of some chromogenic reagents and the development of an improved method. Analyst 99(1180): 413–430. DOI: 10.1039/AN9749900413

    Article  PubMed  CAS  Google Scholar 

  • Driscoll C.T. 1984. A procedure for the fractionation of aqueous aluminium in dilute waters. Int. J. Environ. Anal. Chem. 16(4): 93–104. DOI: 10.1080/03067318408076957

    Article  Google Scholar 

  • Evans C.D., Cullen J.M., Alewell C., Marchetto A., Moldan F., Kopáček J., Prechtel A., Rogora M., Vesely J. & Wright R.F. 2001. Recovery from acidification in European surface waters. Hydrol. Earth Syst. Sci. 5(3): 283–297. DOI: 10.5194/hess-5-283-2001

    Article  Google Scholar 

  • Fjellheim A. & Raddum G.G. 1990. Acid precipitation: Biological monitoring of streams and lakes. Sci. Total Envir. 96(1–2): 57–66. DOI: 10.1016/0048-9697(90)90006-G

    Article  CAS  Google Scholar 

  • Fjellheim A., Raddum G.G., Vandvik V., Cogălniceanu D., Boggero A., Brancelj A., Galas J., Sporka F., Vidinova Y., Bitusik P., Dumnicka E., Gâldean N., Kownacki A., Krno I., Preda E., Rîsnoveanu G. & Stuchlik E. 2009. Diversity and distribution patterns of benthic invertebrates along alpine gradients. A study of remote European freshwater lakes. Adv. Limnol. 62: 167–190. DOI: 10.1127/advlim/62/2009/167

    CAS  Google Scholar 

  • Fott J., Pražáková M., Stuchlík E. & Stuchlíková Z. 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274(1–3): 37–47. DOI: 10.1007/BF00014625

    Article  CAS  Google Scholar 

  • Frost S., Huni A. & Kershaw W.E. 1971. Evaluation of a kicking technique for sampling stream bottom fauna. Can. J. Zool. 49(2): 167–173. DOI: 10.1139/z71-026

    Article  Google Scholar 

  • Graf W., Murphy J., Dahl J., Zamora-Munoz C. & Lopez-Rodriguez M.J. 2008. Trichoptera. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 1. Pensoft Publishers, Sofia-Moscow, 388 pp. ISBN: 9789546424419

    Google Scholar 

  • Havas M. & Rosseland B.O. 1995. Response of zooplankton, benthos, and fish to acidification: an overview. Water Air Soil Pollut. 85(1): 51–62. DOI: 10.1007/BF00483688

    Article  CAS  Google Scholar 

  • Hendrey G.R. & Wright R.F. 1976. Acid precipitation in Norway: Effects on aquatic fauna J. Great Lakes Res. 2(Suppl. 1): 192–207. DOI: 10.1016/S0380-1330(76)72327-X

    Article  Google Scholar 

  • Horecký J., Stuchlík E., Chvojka P., Hardekopf D.W., Mihaljevič M. & Špaček J. 2006. Macroinvertebrate community and chemistry of the most atmospherically acidified streams in the Czech Republic. Water Air Soil Pollut. 173(1–4): 261–272. DOI: 10.1007/s11270-005-9071-0

    Article  Google Scholar 

  • Horsák M. 2006. Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. J. Biogeograph. 33(1): 98–107. DOI: 10.1111/j.1365-2699.2005.01359.x

    Article  Google Scholar 

  • Hořická Z., Stuchlík E., Hudec I., Černý M. & Fott J. 2006. Acidification and the structure of crustacean zooplankton in mountain lakes: The Tatra Mountains (Slovakia, Poland). Biologia 61(18 Suppl.): S121–S134. DOI: 10.2478/s11756-006-0125-6

    Google Scholar 

  • Jeffries D.S., Clair T.A., Couture S., Dillon P.J., Dupont J., Keller W.B., McNicol D.K., Turner M.A., Vet R. & Weeber R. 2003. Assessing the recovery of lakes in southeastern Canada from effects of acidic deposition. Ambio 32(3): 176–182. DOI: 10.1579/0044-7447-32.3.176

    PubMed  Google Scholar 

  • Kopáček J. & Hejzlar J. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53(3): 173–183. DOI: 10.1080/03067319308045987

    Article  Google Scholar 

  • Kopáček J., Hejzlar J., Stuchlík E., Fott J. & Veselý J. 1998. Reversibility of acidification of mountain lakes after reduction in nitrogen and sulphur emissions in Central Europe. Limnol. Oceanogr. 43(2): 357–36. DOI: 10.4319/lo.1998.43.2.0357

    Article  Google Scholar 

  • Kopáček J., Stuchlík E., Veselý J., Schaumburg J., Anderson I.C., Fott J., Hejzlar J. & Vrba J. 2002. Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water Air Soil Pollut. Focus 2(2): 91–114. DOI: 10.1023/A:1020190205652

    Article  Google Scholar 

  • Kopáček J., Turek J., Hejzlar J. & Porcal P. 2011. Bulk deposition and throughfall fluxes of elements in the Bohemian Forest (Central Europe) from 1998 to 2009. Boreal Envir. Res. 16(6): 495–508.

    Google Scholar 

  • Kopáček J., Vesely J. & Stuchlík E. 2001. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the industrial revolution (1850–2000). Hydrol. Earth Syst. Sci. 5: 391–405. DOI: 10.5194/hess-5-391-2001

    Article  Google Scholar 

  • Kownacki A., Galas J., Dumnicka E. & Mielewczyk S. 2000. Invertebrate communities in permanent and temporary high mountain lakes (Tatra Mts.). Ann. Limnol. — Int. J. Limnol. 36(3): 181–188. DOI: 10.1051/limn/2000016

    Article  Google Scholar 

  • Krno I., Šporka F., Galas J., Hamerlík L., Zaťovičová Z. & Bitušík P. 2006. Littoral benthic macroinvertebrates of mountain lakes in the Tatra Mountains (Slovakia, Poland). Biologia 61(Suppl. 18): S147–S166. DOI: 10.2478/s11756-006-0127-4

    Article  CAS  Google Scholar 

  • Kubovčík V. & Bitušík P. 2006. Subfossil chironomids (Diptera, Chironomidae) in three Tatra Mountain lakes (Slovakia) on an acidification gradient. Biologia 61(Suppl. 18): S213–S220. DOI: 10.2478/s11756-006-0133-6

    Article  Google Scholar 

  • Landa V. & Soldán T. 1989. Rozšíření jepic v ČSSR a jeho změny v souvislosti se změnami kvality vody v povodí Labe [Distribution of mayflies (Ephemeroptera) in Czechoslovakia and its changes in connection with water quality changes in the Elbe basin]. Studie ČSAV, 17, Academia, Praha, 172 pp.

    Google Scholar 

  • Laudon H. & Westling O. 2005. Drought induced episodes: Can they counteract the acidification recovery in southern Sweden? p. 384. In: Brimblecombe P., Hiroshi H., Houle D. & Novak M. (eds), Acid Rain 2005, 7th International Conference on Acid Deposition, Prague, Czech Republic, June 12–17, 2005. Conference Abstracts, ČHMÚ Praha, 384 pp. ISBN: 978-1-4020-5884-4

    Google Scholar 

  • Layer K., Hildrew A., Monteith D. & Woodward G. 2010. Long-term variation in the littoral food web of an acidified mountain lake. Global Change Biol. 16(11): 3133–3143. DOI: 10.1111/j.1365-2486.2010.02195.x

    Google Scholar 

  • Ledger M.E. & Hildrew A.G. 2001. Growth of an acid-tolerant stonefly on epilithic biofilms from streams of contrasting pH. Freshwater Biol. 46(11): 1457–1470. DOI: 10.1046/j.1365-2427.2001.00764.x

    Article  CAS  Google Scholar 

  • Mackereth F.J.H., Heron J. & Talling J.F. 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association Scientific Publication no. 36. Titus Wilson & Sons Ltda, Kendal, 120 pp. ISBN: 0900386312

    Google Scholar 

  • Majer V., Cosby B.J., Kopáček J. & Vesely J. 2003. Modelling reversibility of central European mountain lakes from acidification: Part I — The Bohemian Forest. Hydrol. Earth Syst. Sci. 7: 494–509. DOI: 10.5194/hess-7-494-2003

    Article  CAS  Google Scholar 

  • Moiseenko T.I. 2003. Effects of acidification on aquatic ecosystems. Russ. J. Ecol. 36(2): 93–102. DOI: 10.1007/s11184-005-0017-y

    Article  Google Scholar 

  • Moog O. (ed.) 2002. Fauna Aquatica Austriaca. A Comprehensive Species Inventory of Austrian Aquatic Organisms with Ecological Notes. 2nd Edition 2002. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna. xx pp. ISBN: 3-85 174-044-0

    Google Scholar 

  • Nedbalová L., Vrba J., Fott J., Kohout L., Kopáček J., Macek M. & Soldán T. 2006. Biological recovery of the Bohemian Forest lakes from acidification. Biologia 61(20 Suppl.): S453–S466. DOI: 10.2478/s11756-007-0071-y

    Article  Google Scholar 

  • Økland K.A. & Kuiper J.G.J. 1982. Distribution of small mussels (Sphaeriidae) in Norway, with notes on their ecology. Malacologia 22(1–2): 469–477.

    Google Scholar 

  • Økland J. & Økland K.A. 1986. The effects of acid deposition on benthic animals in lakes and streams. Experientia 42(5): 471–486. DOI: 10.1007/BF01946685

    Article  Google Scholar 

  • Ormerod S.J., Boole P., McCahon C.P., Weatherley N.S., Pascoe D. & Edwards R.W. 1987. Short-term experimental acidification of a Welsh stream: comparing the biological effects of hydrogen ions and aluminium. Freshwater Biol. 17(2): 341–356. DOI: 10.1111/j.1365-2427.1987.tb01054.x

    Article  CAS  Google Scholar 

  • Oulehle F., Cosby B.J., Wright R.F., Hruška J., Kopáček J., Krám P., Evans C.D. & Moldan F. 2012. Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Envir. Pollut. 165: 158–166. DOI: 10.1016/j.envpol.2012.02.021

    Article  CAS  Google Scholar 

  • Posch M., Hettelingh J.-P. & Slotweg J. (eds) 2003. Manual for Dynamic Modelling of Soil Response to atmospheric Deposition, RIVM Report 259101012. Bilthoven, Netherlands, 71 pp.

    Google Scholar 

  • Raddum G.G. & Skjelkvĺle B.L. 1995. Critical limits of acidification to invertebrates in different regions of Europe. Water Air Soil Pollut. 85(2): 475–480. DOI: 10.1007/BF00476874

    Article  CAS  Google Scholar 

  • Schartau A.K., Moe S.J., Sandin L., McFarland B. & Raddum G.G. 2008. Macroinvertebrate indicators of lake acidification: analysis of monitoring data from UK, Norway and Sweden. Aquat. Ecol. 42(2): 293–305. DOI: 10.1007/s10452-008-9186-7

    Article  CAS  Google Scholar 

  • Schindler D.W. 1988. Effects of acid rain on freshwater ecosystems. Science 239(4836): 149–157. DOI: 10.1126/science.239.4836.149

    Article  PubMed  CAS  Google Scholar 

  • Soldán T., Bojková J., Vrba J., Bitušík P., Chvojka P., Papáček M., Peltanová J., Sychra J. & Tátosová J. 2012. Aquatic insects of the Bohemian Forest glacial lakes: Diversity, longterm changes and influence of acidification. Silva Gabreta 18(3): 123–283.

    Google Scholar 

  • Stuchlík E., Appleby P., Bitušík P., Curtis C., Fott J., Kopáček J., Pražáková M., Rose N., Strunecky O. & Wright R.F. 2002. Reconstruction of long-term changes in lake water chemistry, zooplankton and benthos of a small, acidified high-mountain lake: Magic modelling and paleolimnogical analysis. Water Air Soil Pollut. Focus 2(2): 127–138. DOI: 10.1023/A:1020198424308

    Article  Google Scholar 

  • Stuchlík E., Kopáček J., Fott J. & Hořická Z. 2006. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia 61(18 Suppl.): S11–S20. DOI: 10.2478/s11756-006-0116-7

    Article  Google Scholar 

  • Šporka F. 1992. Máloštetinavce (Oligochaeta) jazier v Západných Tatrách. Zborník prác o Tatranskom národnom parku 32: 139–148.

    Google Scholar 

  • Tixier G. & Guérold F. 2005. Plecoptera response of acidification in several head water streams in the Vosges Mountains (northeastern France). Biodivers. Conserv. 14(6): 1525–1539. DOI:.10.1007/s10531-004-9790-3

    Article  Google Scholar 

  • Ungermanová L. 2009. Makrozoobentos litorální zóny acidifikovanych šumavských jezer [Macrozoobenthos of the littoral zone of acidified lakes in the Bohemian Forest Mountains]. Diplomová práca. Univerzita Karlova v Praze, Přírodovědecká fakulta, ústav pro životní prostředí [Ms., Diploma thesis, Charles University in Prague], 53 pp.

    Google Scholar 

  • Veselý J. 1994. Investigation of the nature of the Šumava lakes: a review. Čas. Nár. Muz. Praha, Řada Přírodověd. 163(1–4): 103–120.

    Google Scholar 

  • Veselý J., Kopáček J. & Norton S.A. 2003. Increasing temperature decreases aluminium concentrations in Central European lakes recovering from acidification. Limnol. Oceanogr., 48(6): 2346–2354. DOI: 10.4319/lo.2003.48.6.2346

    Article  Google Scholar 

  • Vranovský M., Krno K., Šporka F. & Tomajka J. 1994. The effect of anthropogenic acidification on the hydrofauna of the lakes of the West Tatra Mountains (Slovakia). Hydrobiologia 274(1–3): 163–170. DOI: 10.1007/BF00014639

    Article  Google Scholar 

  • Vrba J., Kopáček J. & Fott J. 2002. Šumavská ledovcová jezera na přelomu tisíciletí [Glacial Lakes in Šumava/Bohemian Forest lake on the turn of centuries]. Živa 6: 265–269.

    Google Scholar 

  • Vrba J., Kopáček J., Fott J., Kohout L., Nedbalová L., Pražáková M., Soldán T. & Schaumburg J. 2003. Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). Sci. Tot. Envir. 310(1–3): 73–85. DOI: 10.1016/S0048-9697(02)00624-1

    Article  CAS  Google Scholar 

  • Wright R.F., Larssen T., Camarero L., Cosby B.J., Ferrier R.C., Helliwell R., Forsius M., Jenkins A., Kopáček J., Majer V., Moldan F., Posch M., Rogora M. & Schopp W. 2005. Recovery of acidified European surface water. Environ. Sci. Technol. 38/39(3): 64A–72A. PMID: 15757325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Kolaříková.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungermanová, L., Kolaříková, K., Stuchlík, E. et al. Littoral macroinvertebrates of acidified lakes in the Bohemian Forest. Biologia 69, 1190–1201 (2014). https://doi.org/10.2478/s11756-014-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0420-6

Key words

Navigation