Skip to main content
Log in

Metal uptake, antioxidant status and membrane potential in maize roots exposed to cadmium and nickel

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Root growth of the seedlings of maize cultivars Premia and Blitz exposed to 2 μM cadmium (Cd), nickel (Ni) or both metals acting simultaneously (Cd + Ni) for 72 h was significantly reduced but not ceased. The effect was more pronounced in the seedlings of the cv. Blitz. The heavy metals (HMs) contents increased significantly in the roots. Simultaneous application of metals had an antagonistic effect on either Cd or Ni uptake in Premia but not in Blitz. In control roots the contents of ascorbic acid (AsA) and dehydroascorbic acid (DHA) were lower and gluthatione (GSH) content was higher in Premia than in Blitz. A decrease of AsA content was induced by all metal treatments in Premia but only by Cd + Ni in Blitz while an increase was induced by single metals in this cultivar. All metal treatments increased DHA contents in both cultivars. GSH content decreased significantly in Premia treated with Cd or Cd + Ni, and in Blitz treated with Ni. Unlike the contents of AsA, DHA and GSH, the increased metal concentrations in root cells did not affect the membrane potential (E M). The changes in antioxidant contents depended on both, maize genotypes and HMs treatments. Nevertheless, the results indicated a role of antioxidative system in minimizing the effects of oxidative stress and protecting cell membranes in both maize cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelova V., Ivanova R., Delibaltova V. & Ivanov K. 2004. Bioaccumulation and distribution of heavy metals in fiber crops (flax, cotton and hemp). Ind. Crop. Prod. 19: 197–205.

    Article  CAS  Google Scholar 

  • Arrigoni O. & De Tullio M.C. 2000. The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions. J. Plant Physiol. 157: 481–488.

    Article  CAS  Google Scholar 

  • Arvind P. & Prasad M.N.V. 2005. Modulation of cadmiuminduced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol. Biochem. 43: 107–116.

    Article  Google Scholar 

  • Baccouch S., Chaoui A. & Ferjani E. 2001. Nickel toxicity induces oxidative damage in Zea mays roots. J. Plant Nutr. 24: 1085–1097.

    Article  CAS  Google Scholar 

  • Bai C., Reilly C.C. & Wood B.W. 2006. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol. 140: 433–443.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Belimov A.A., Safronova V.I., Tsyganov V.E., Borisov A.Y., Tikhonovich I.A., Soboleva V.N., Kvokova N.A., Zaitseva L.N., Poddubnykh O.N., Dolgaya L.N. & Sukhanov P.A. 1999. Screening of garden pea varieties by their resistance to cadmium and accumulation of heavy metals. Pisum Genetics 31: 39–40.

    Google Scholar 

  • Beutler E., Duran O. & Kelly B.U. 1963. The definition of glutathione in blood. J. Lab. Chim. Med. 61: 882–886.

    CAS  Google Scholar 

  • Borzou A. & Azizinezhad F. 2012. Investigation of lettuce pollution with cadmium and lead in Varamin region in Iran. J. Pharm. Biol. Chem. Soc. 3: 317–324.

    CAS  Google Scholar 

  • De Pinto M.C., Francis D. & De Gara L. 1999. The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY2 cells. Protoplasma 209: 90–97.

    Article  PubMed  Google Scholar 

  • Ekmekçi Y., Tanyolac D., Ayhan B. 2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J. Plant Physiol. 165: 600–611.

    Article  PubMed  Google Scholar 

  • Fiala R., Kenderešová L., Syshchykov D.V., Martinka M., Repka V., Pavlovkin J. & Čiamporová M. 2013. Comparison of root growth and morphological responses to cadmium and nickel in two maize cultivars. Modern Phytomorphology 3: 131–137.

    Google Scholar 

  • Freeman J.L., Persans M.W., Nieman K., Albrecht C., Peer W., Pickering I.J. & Salta D.E. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16: 2176–2191.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gajewska, E. & Skłodowska M. 2008. Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth. Regul. 54: 179–188.

    Article  CAS  Google Scholar 

  • Gallie D.R. 2013. L-Ascorbic Acid: A multifunctional molecule supporting plant growth and development. Scientifica, Article ID 795964, 24 pages, http://dx.doi.org/10.1155/2013/795964.

    Google Scholar 

  • Gryshko V.N. & Syshchykov D.V. 2002. Method for determination of glutathione reduced form in plant vegetative organs. Ukr. Biochem. J. 74: 123–124.

    Google Scholar 

  • Huang G.Y., Wang Y.S., Sun C.C., Dong J.D. & Sun Z.X. 2010. The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Int. J. Oceanograph. Hydrobiol. 39: 11–25.

    CAS  Google Scholar 

  • Janicka-Russak M., Kabała K., Burzyński M. & Kłobus G. 2008. Response of plasma membrane H+ -ATPase to heavy metal stress in Cucumis sativus roots. J. Exp. Bot. 59: 3721–3728.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jocsak I., Vegvari G., Rabnecz G. & Droppa M. 2008. Investigation of nickel stress induction in terms of metal accumulation and antioxidative enzyme activity in barley seedlings. Acta Biol. Hung. 52: 167–71.

    Google Scholar 

  • Kampfenkel K., van Montagu M. & Inzč D. 1995. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 225: 165–167.

    Article  PubMed  CAS  Google Scholar 

  • Kumar H., Sharma D. & Kumar V. 2012. Nickel-induced oxidative stress and role of antioxidant defense in barley roots and leaves. Int. J. Env. Biol. 2: 121–128.

    Google Scholar 

  • L’Huiller L., d’Auzac J., Durand M. & Michaud-Ferriere N. 1996. Nickel effects on two maize (Zea mays) cultivars: Growth, structure, Ni concentration, and localization. Can. J. Bot. 74: 1547–1554.

    Article  Google Scholar 

  • Liu Y.G., Wang X., Zeng G.M., Qu D., Gu J.J., Zhou M. & Chai L. 2007. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.). Chemosphere 69: 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Maysa M.H. & Abdel-Aal E.A. 2008. Oxidative stress and antioxidant defense mechanisms in response to cadmium treatment. Am. Eur. J. Agric. Environ. Sci. 4: 655–669.

    Google Scholar 

  • Meuwly P. & Rauser V. 1992. Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium. Plant Physiol. 99: 8–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paradiso A., Berardino R., De Pinto M.C., Sanità di Toppi L., Storelli M.M., Tommasi F. & De Gara L. 2008. Increase in ascorbate-gluthatione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol. 49: 362–374.

    Article  PubMed  CAS  Google Scholar 

  • Pavlovkin J., Luxová M., Mistríková I. & Mistrík I. 2006. Shortand long-term effects of cadmium on transmembrane electric potential (Em) in maize roots. Biologia 61: 109–114.

    Article  CAS  Google Scholar 

  • Rao K.V.M. & Sresty T.V. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157: 113–128.

    Article  Google Scholar 

  • Rauser W.E. & Meuwly P. 1995. Retention of cadmium in roots of maize seedlings. Plant Physiol. 109: 195–202.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reeves R.D. & Baker A.J.M. 2000. Metal-accumulating plants, pp. 193–229. In: Raskin I. & Ensley B.D. (eds), Phytoremediation of toxic metals: Using plants to clean up the environment. John Wiley and Sons, London.

    Google Scholar 

  • Rellán-Álvarez R., Ortega-Villasante C., Álvarez-Fernandez A., del Campo F.F. & Hernández L.E. 2006. Stress responses of Zea mays to cadmium and mercury. Plant Soil 279: 41–50.

    Article  Google Scholar 

  • Rivera-Becerril F., Calantzis C., Turnau K., Caussanel J-P., Belimov A.A., Gianinazzi S., Strasser J.R. & Gianinazzi-Pearson V. 2002. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J. Exp. Bot. 53: 1177–1185.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Serrano M., Romero-Puertas M.C., Zabalza A., Corpas F.J., Gomez M., Del Rio L.A. & Sandalio L.M. 2006. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell. Env. 29: 1532–1544.

    Article  CAS  Google Scholar 

  • Sanz A., Llamas A. & Ullrich C.I. 2009. Distinctive effects of Cd and Ni on membrane functionality. Plant Signal. Behav. 4: 4980–4998.

    Article  Google Scholar 

  • Schützendübel A. & Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351–1365.

    Article  PubMed  Google Scholar 

  • Seregin I.V. & Kozhevnikova A.D. 2006. Physiological role of nickel and its toxic effects on higher plants. Russ. J. Plant Physiol. 53: 257–277.

    Article  CAS  Google Scholar 

  • Sharma S.S. & Dietz K. 2009. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Široká B., Huttová J., Tamás L., Šimonovičová M. & Mistrík I. 2004. Effect of cadmium on hydrolytic enzymes in maize root and coleoptile. Biologia 59: 513–517.

    Google Scholar 

  • Tran T.A. & Popova L.P. 2013. Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk. J. Bot. 37: 1–13.

    CAS  Google Scholar 

  • Wang M., Zou J., Duan X., Jiang W. & Liu D. 2007. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresource Technol. 98: 82–88.

    Article  CAS  Google Scholar 

  • Yadav S.K. 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 76: 167–179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Pavlovkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artiushenko, T., Syshchykov, D., Gryshko, V. et al. Metal uptake, antioxidant status and membrane potential in maize roots exposed to cadmium and nickel. Biologia 69, 1142–1147 (2014). https://doi.org/10.2478/s11756-014-0414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0414-4

Key words

Navigation