Caddisflies (Trichoptera) as good indicators of environmental stress in mountain lotic ecosystems

Abstract

We analysed the influence of environmental stress (mainly deforestation of catchment due to windstorm) on taxonomic structure as well as composition of functional groups (FG) based on zonation preferences and feeding types of caddisfly species in 11 streams (12 sites) with various environmental conditions situated in the High Tatra Mts, Slovakia. Using Spearman correlation, we confirmed an expected positive association between taxonomic and functional groups richness (Ri), diversity (Shannon — Wiener Index) (Di) and equitability (Eq), but not with habitat diversity (HQA indices). By testing measured physiographical, physico-chemical and hydromorphological factors using CCA analysis we found that stream order and temperature best explained the functional and taxonomic structure of caddisfly assemblages. The occurrence of Rhyacophila glareosa decreased with increasing daily mean water temperature positively correlated with deforestation, whereas R. tristis (dominating at sites most affected by erosion) showed the opposite pattern. Composition of functional groups based on zonation preferences and feeding types distinguished well near natural sites from impacted ones, dominated by crenal/rhithral predators, and explained more of the overall variance of the species-environment relationships than taxonomic composition of caddisfly assemblages.

This is a preview of subscription content, access via your institution.

References

  1. Allan J.D. 1995. Stream Ecology: Structure and Function of Running Waters. Chapman and Hall, London, 388 pp. ISBN: 0412355302, 9780412355301

    Book  Google Scholar 

  2. AQEM Consortium, 2002. Manual for application of the AQEM system. A comprehensive method to access European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0, February 2002. Contract No: EVK1-CT1999-00027, 198 pp. http://www.aqem.de/mains/products.php (accessed March 2013)

    Google Scholar 

  3. Bacher I. & Waringer J.A. 1996. Hydraulic microdistribution of cased caddis larvae in an Austrian mountain brook. Int. Rev. Ges. Hydrobiol. Hydrograph. 81(4): 541–554. DOI: 10.1002/iroh.19960810408

    Article  Google Scholar 

  4. Barquín J. & Death R.G. 2011. Downstream changes in springfed stream invertebrate communities: the effect of increased temperature range? J. Limnol. 70(Suppl. 1): 134–146. DOI: 10.3274/JL11-70-S1-10

    Google Scholar 

  5. Beracko P. & Lukáš J. 2012. Časopriestorové zmeny spoločenstva potočníkov (Trichoptera) toku Demänovka. Folia Faun. Slov. 17(1): 11–20.

    Google Scholar 

  6. Bona F., Falasco E., Fenoglio S., Iorio L. & Badino G. 2008. Response of macroinvertebrate and diatom communities to human-induced physical alteration in mountain streams. River Res. Appl. 24(8): 1068–1081. DOI: 10.1002/rra.1110

    Article  Google Scholar 

  7. Boulton A.J. 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biol. 48(7): 1173–1185. DOI: 10.1046/j.1365-2427.2003.01084.x

    Article  Google Scholar 

  8. Boulton A.J. & Lake P.S. 1990. The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features. Freshwater Biol. 24(1): 123–141. DOI: 10.1111/j.1365-2427.1990.tb00313.x

    CAS  Article  Google Scholar 

  9. Boyero L. 2003. Multiscale patterns of spatial variation in stream macroinvertebrate communities. Ecol. Res. 18(4): 365–379. DOI: 10.1046/j.1440-1703.2003.00562.x

    Article  Google Scholar 

  10. Brown L.E., Hannah D.M. & Milner A.M. 2007. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Global Change Biol. 13(5): 958–966. DOI: 10.1111/j.1365-2486.2007.01341.x

    Article  Google Scholar 

  11. Bulánková E., Halgoš J., Krno I., Bitušík P., Illéšová D., Lukáš J., Derka T. & Šporka F. 2001. The influence of different thermal regime on the structure of coenoses of stenothermal hydrobionts in mountain streams. Acta Zool. Univ. Comen. 44(1): 95–101.

    Google Scholar 

  12. Bulanková E., Kalaninová D. & Šporka F. 2013. River morphology of mountain streams influenced by the windstorm in the High Tatra Mts. Biologia 68(3): 487–500. DOI: 10.2478/s11756-013-0166-6

    Article  Google Scholar 

  13. Cereghino R. 2002. Shift from a herbivorous to a carnivorous diet during the larval development of some Rhyacophila species (Trichoptera). Aquatic Insects 24(2): 129–135. DOI: 10.1076/aqin.24.2.129.4898

    Article  Google Scholar 

  14. Chakona A., Phiri C. & Day J.A. 2009. Potential for Trichoptera communities as biological indicators of morphological degradation in riverine systems. Hydrobiologia 621(1): 155–167. DOI: 10.1007/s10750-008-9638-z

    Article  Google Scholar 

  15. Cordova J.M., Rosi-Marshall E.J., Yamamuro A.M. & Lamberti G.A. 2007. Quantity, controls and functions of large woody debris in Midwestern USA streams. River Res. Appl. 23(1): 21–33. DOI: 10.1002/rra.963

    Article  Google Scholar 

  16. Cushing C.E. & Allan J.D. 2001. Streams, Their Ecology and Life. Academic Press, San Diego, 366 pp. ISBN: 0120503409, 978-0120503407

    Google Scholar 

  17. Čiamporová-Zaťovičová Z., Hamerlík L., Šporka F. & Bitušík, P. 2010. Litoral benthic macroinvertebrates of alpine lakes (Tatra Mts.) along an altitudinal gardient: a basis for climate change assessment. Hydrobiologia 648(1): 19–34. DOI: 10.1007/s10750-010-0139-5

    Google Scholar 

  18. Davidson F.A. & Wilding J.L. 1943. A quantitative faunal investigation of a cold spring community. Amer. Midl. Natur. 29(1): 200–209.

    CAS  Google Scholar 

  19. Erman N.A. & Erman D.C. 1992. Factors determining biodiversity in Sierra Nevada cold spring systems, pp. 119–127. In: Hall C.A., Doyle-Jones V. & Widawski B. (eds), The History of Water: Eastern Sierra Nevada, Owens valley, White-Inyo mountains, Series: White Mountain Research Station symposium 4, University of California, Los Angeles, 453 pp. ISBN: 1879851040, 978-1879851047. http://www.wmrc.edu/resources/docs/wmrs44-4.pdf

    Google Scholar 

  20. Feld C.K. & Hering D. 2007. Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biol. 52(7): 1380–1399. DOI: 10.1111/j.1365-2427.2007.01749.x

    Article  Google Scholar 

  21. Fetherston K.L., Naiman R.J. & Bilby R.E. 1995. Large woody debris, physical process, and riparian forest development in montane river networks of the Pacific Northwest. Geomorphology 13(1–4): 133–144. DOI: 10.1016/0169-555X(95)00033-2

    Article  Google Scholar 

  22. Gerhard M. & Reich M. 2000. Restoration of streams with large wood: Effects of accumulated and built-in wood on channel morphology, habitat diversity and aquatic fauna. Int. Rev. Hydrobiol. 85(1): 123–137. DOI: 10.1002/(SICI)1522-2632(200003)85:1〈123::AID-IROH123〉3.0.CO;2-T

    Article  Google Scholar 

  23. Giller P.S. & Malmqvist B. 1998. The Biology of Streams and Rivers. Biology of Habitats Series. Oxford University Press, Oxford, 296 pp. ISBN: 0-19-854977-6, 978-0-19-854977-2

    Google Scholar 

  24. Graf W., Grasser U. & Waringer J. 1995. Trichoptera, In: Moog O. (ed.), Fauna Aquatica Austriaca — A Comprehensive Species Inventory of Austrian Aquatic Organisms with Ecological Notes. Bundesministerium für Land-und Forstwirtschaft, Wasserwirtschaftskataster, Wien. ISBN: 3-85 174-001-7

    Google Scholar 

  25. Graf W., Grasser U. & Waringer J. 2002. Trichoptera / Teil III Metazoa — Trichoptera, 43 pp. In: Moog, O. (ed.), Fauna Aquatica Austriaca. Lieferung 2002. Bundesministerium für Land- und Forstwirtschaft, Wasserwirtschaftskataster, Wien. ISBN: 3-85 174-044-0

    Google Scholar 

  26. Graf W., Murphy J., Dahl J., Zamora-Muńoz C. & López-Rodríguez M.J. 2008. Distribution and ecological preferences of European freshwater organisms, Vol. 1. Trichoptera. Schmidt-Kloiber A. & Hering D. (eds), Pensoft, Sofia-Moscow, 388 pp. ISBN: 9789546424419

  27. Gurnell A.M., Piegay H., Swanson F.J. & Gregory S.V. 2002. Large wood and fluvial processes. Freshwater Biol. 47(4): 601–619. DOI: 10.1046/j.1365-2427.2002.00916.x

    Article  Google Scholar 

  28. Gurtz M.E. & Wallace J.B. 1984. Substrate-mediated response of stream invertebrates to disturbance. Ecology 65: 1556–1569. DOI: http://dx.doi.org/10.2307/1939135

    Article  Google Scholar 

  29. Gurung A.B. (ed.) 2006. GLOCHAMORE Global Change and Mountain Regions. Research Strategy. Mountain Research Initiative, Zürich, Switzerland, 47 pp.

    Google Scholar 

  30. Hammer O. & Harper D.A.T. 2001. PAST, version 0.45. http://www.uio.no/ohammer/past

    Google Scholar 

  31. Heino J. 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biol. 50(9): 1578–1587. DOI: 10.1111/j.1365-2427.2005.01418.x

    Article  Google Scholar 

  32. Heino J. 2008. Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnol. Oceanogr. 53(4): 1446–1455. DOI: 10.4319/lo.2008.53.4.1446

    Article  Google Scholar 

  33. Heino J., Mykrä H., Kotanen J. & Muotka T. 2007. Ecological filters and variability in stream macroinvertebrate communities: Do taxonomic and functional structure follow the same path? Ecography 30(2): 217–230. DOI: 10.1111/j.0906-7590.2007.04894.x

    Article  Google Scholar 

  34. Hering D., Schmidt-Kloiber A., Murphy J., Lücke S., Zamora-Muńoz C., López-Rodríguez M.J., Huber T. & Graf W. 2009. Potential impact of climate change on aquatic insects: A sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat. Sci. 71(1): 3–14. DOI: 10.1007/s00027-009-9159-5

    Article  Google Scholar 

  35. Herschy R.W. 1985. Streamflow Measurement. Elsevier Applied Science, London, 553 pp. ISBN: 0853343276, 9780853343271

    Book  Google Scholar 

  36. Hoffmann A. & Hering D. 2000. Wood-Associated Macroinvertebrate Fauna in Central European Streams. Int. Rev. Hydrobiol. 85(1): 25–48. DOI: 10.1002/(SICI)1522-2632(200003)85:1〈25::AID-IROH25〉3.0.CO;2-R

    Article  Google Scholar 

  37. Hopkinson C.S., Lugo A.E., Alber M., Covich A.P. & Van Bloem S.J. 2008. Forecasting effects of sea-level rise and windstorms on coastal and inland ecosystems. Front. Ecol. Environ. 6(5): 255–263. DOI: 10.1890/070153

    Article  Google Scholar 

  38. Huston M.A. 1994. Biological diversity. The Coexistence of Species on Changing Landscapes. Cambridge Univ. Press, 681 pp. ISBN: 0521369304, 9780521369305

    Google Scholar 

  39. Irons J.G. III, Miller L.K. & Oswood M.W. 1993. Ecological adaptations of aquatic macroinvertebrates to overwintering in interior Alaska (U.S.A.) subarctic streams. Can. J. Zool. 71(1): 98–108. DOI: 10.1139/z93-015

    Article  Google Scholar 

  40. Johnson R.K. & Goedkoop W. 2002. Littoral macroinvertebrate communities: spatial scale and ecological relationships. Freshwater Biol. 47(10): 1840–1854. DOI: 10.1046/j.1365-2427.2002.00932.x

    Article  Google Scholar 

  41. Kalaninová D., Bulanková E. & Šporka F. 2013. Caddisfly assemblages of high mountain streams influenced by a major windstorm event. Biologia 68(3): 501–509. DOI: 10.2478/s11756-013-0173-7

    Article  Google Scholar 

  42. Krno I. 2006. Macrozoobenthos of two different catchment areas of the Tatra Mountain lakes with a special reference on the effects of acidification. Biologia 61(18 Suppl.): S181–S184. DOI: 10.2478/s11756-006-0129-2

    Article  Google Scholar 

  43. Krno I., Ertlová E., Tomajka J. & Šporka F. 1985. Klasifikácia vybraných tatranských plies na základe významnejších abiotických a biotických faktorov, pp. 220–224. In: Zborník VII. konferencie ČSLS, Poznávanie, kvalitatívne a kvantitatívne hodnotenie vodných ekosystémov, Nitra, 380 pp.

    Google Scholar 

  44. Krno I., Ertlová E., Tomajka J. & Šporka F. 1986. Nové poznatky o typológii tatranských jazier. Správy Slov. Zool. Spol. SAV 12: 132–135.

    Google Scholar 

  45. Krno I., Šporka F. & Štefková E. 2013. The influence of environmental variables on larval growth of stoneflies (Plecoptera) in natural and deforested streams. Biologia 68(5): 950–960. DOI: 10.2478/s11756-013-0236-9

    CAS  Article  Google Scholar 

  46. Krno I., Šporka F., Štefková E., Tirjaková E., Bitušík P., Bulánková E., Lukáš J., Illéšová D., Derka T., Tomajka J. & Černý J. 2006. Ecological study of a high-mountain stream ecosystem (Hincov potok, High Tatra Mountains, Slovakia). Acta Soc. Zool. Bohem. 69: 299–316.

    Google Scholar 

  47. Lechthaler W. & Stockinger W. 2005. Trichoptera — Key to Larvae from Central Europe; (Electronic keys & Reference Collections); EUTAXA, CD-Edition, Vienna, Austria, 400 pp. www.eutaxa.com. ISBN: 3-9501839-1-4.

    Google Scholar 

  48. Lehotský M. & Grešková A. 2007. Odozva morfológie vysokogradientového vodného toku na veternú kalamitu — ekologický aspekt. Geomorphologia Slovaca et Bohemica 7/2: 79–84.

    Google Scholar 

  49. Lorenz A., Hering D., Feld C.K. & Rolauffs P. 2004. A new method for assessing the impact of morphological degradation on the benthic invertebrate fauna for streams in Germany. Hydrobiologia 516(1–3): 107–127. DOI: 10.1023/B:HYDR.0000025261.79761.b3

    Article  Google Scholar 

  50. Macdonald J.S., MacIsaac E.A. & Herunter H.E. 2003. The Effect of Variable-Retention Riparian Buffers on Water Temperatures in Small Headwater Streams in Sub-Boreal Forest Ecosystems of British Columbia. Can. J. Forest Res. 33(8): 1371–1382.

    Article  Google Scholar 

  51. McIntyre M.J. & Minshall G.W. 1996. Changes in transport and retention of coarse particulate organic matter in stress subjected to fire, pp. 59–75. In: Greenlee J. (ed.), The Ecological Implications of Fire in Greater Yellowstone: Proceedings of the Second Bennila Conference on the Greater Yellowstone Ecosystem, Yellowstone National Park, Wyoming, International Association of Wildland Fire, Fairfield, Washington, USA, 235 pp. ISBN: 1-887311-00-9

    Google Scholar 

  52. Meffe G.K. & Marsh P.C. 1983. Distribution of aquatic macroinvertebrates in three Sonoran Desert springbrooks. J. Arid Envir. 6(4): 363–371.

    Google Scholar 

  53. Mihuc T.B., Minshall G.W. & Robinson C.T. 1996. Response of benthic macroinvertebrate populations in Cache C, Yellowstone National Park to the 1988 wildfires, pp. 59–75. In: Greenlee J. (ed.), The Ecological Implications of Fire in Greater Yellowstone: Proceedings of the Second Bennila Conference on the Greater Yellowstone Ecosystem, Yellowstone National Park, Wyoming, International Association of Wildland Fire, Fairfield, Washington, USA, 235 pp. ISBN: 1-887311-00-9

    Google Scholar 

  54. Minshall G.W., Royer T.V. & Robinson C.T. 2001. Response of the Cache Creek macroinvertebrates during the first ten years following disturbance by the 1988 Yellowstone wildfires. Can. J. Fish. Aquat. Sci. 58(6): 1077–1088. DOI: 10.1139/cjfas-58-6-1077

    Article  Google Scholar 

  55. Monaghan M.T., Robinson C.T., Spaak P.T. & Ward J.V. 2005. Macroinvertebrate diversity in fragmented Alpine streams: implications for freshwater conservation. Aquat. Sci. 67(4): 454–464. DOI: 10.1007/s00027-005-0787-0

    Article  Google Scholar 

  56. Moore R.D., Spittlehouse D.L. & Story A. 2005. Riparian microclimate and stream temperature response to forest harvesting: A review. J. Am. Water Resour. Assoc. 41(4): 813–834. DOI: 10.1111/j.1752-1688.2005.tb03772.x

    Article  Google Scholar 

  57. Quinn J.M., Cooper A.B., Davies-Colley R.J., Rutherford J.C. & Williamson R.B. 1997. Land use effect on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand hill country streams. NZ J. Mar. Freshwater Res. 31(5): 569–577. DOI: 10.1080/00288330.1997.9516791

    CAS  Google Scholar 

  58. Quinn J.M. & Hickey C.W. 1990. Characterization and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. NZ J. Mar. Freshwater Res. 24(3): 387–409. DOI: 10.1080/00288330.1990.9516432

    CAS  Google Scholar 

  59. Raven P.J., Holmes N.T.H., Dawson F.H. & Everard M. 1998. Quality assessment using River Habitat Survey data. Aquatic. Conserv. 8(4): 477–499. DOI: 10.1002/(SICI)1099-0755(199807/08)8:4〈477::AID-AQC299〉3.0.CO;2-K

    Article  Google Scholar 

  60. Schmedtje U. & Colling M. 1996. Ökologische Typisierung der aquatischen Makrofauna. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft Heft 4/96, (Herausgeber und Verlag) München, 548 pp. SEPA, 2003. State Environmental Policy Act Handbook. (Inman, R. ed.), Washington State Department of Ecology, 114 pp.

    Google Scholar 

  61. Smith-Cuffney F.L. & Wallace J.B. 1987. The influence of microhabitat on availability of drifting invertebrate prey to a net-spinning caddisfly. Freshwater Biol. 17(1): 91–98. DOI: 10.1111/j.1365-2427.1987.tb01031.x

    Article  Google Scholar 

  62. Spencer C.N. & Hauer F.R. 1991. Phosphorus and nitrogen dynamics in streams during a wildfire. J. N. Amer. Benthol. Soc. 10(1): 24–30.

    Article  Google Scholar 

  63. Sponseller R.A., Benfield E.F. & Valett H.M. 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biol. 46(10): 1409–1424. DOI: 10.1046/j.1365-2427.2001.00758.x

    Article  Google Scholar 

  64. StatSoft, Inc. 2004. STATISTICA (data analysis software system), version 7. www.statsoft.com.

    Google Scholar 

  65. Statzner B., Bis B. & Usseglio-Polatera P. 2001. Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic Appl. Ecol. 2(1): 73–85. DOI: 10.1078/1439-1791-00039

    Article  Google Scholar 

  66. Szczęsny B. 1986. Caddisflies (Trichoptera) of running waters in the Polish North Carpathians. Acta Zool. Cracov. 29(21): 501–586.

    Google Scholar 

  67. Šporka F., Štefková E., Bitušík P., Thompson R., Agustín-Panareda A., Appleby P.G., Grytnes J.A., Kamenik C., Krno I., Lami A., Rose N.L. & Shilland E. 2002. The paleolimnological analysis of sediments from high mountain lake NiŽné Terianske pleso in the High Tatras (Slovakia). J. Paleolimnol. 28(1): 95–109. DOI: 10.1023/A:1020376003123

    Article  Google Scholar 

  68. ter Braak C.J.F. & Šmilauer P. 1997. Canoco for Windows, Version 4.56. Biometrics — Plant Research International, Wageningen, The Netherlands.

    Google Scholar 

  69. Uehlinger U. 1991. Spatial and temporal variability of the periphyton biomass in a prealpine river (Necker, Switzerland). Arch. Hydrobiol. 123(2): 219–237.

    Google Scholar 

  70. Vannote R. & Sweeney B.W. 1980. Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Amer. Natur. 115(5): 667–695. DOI: 10.1086/283591

    Article  Google Scholar 

  71. Vogl R. 2011. ASTERICS software for German assessment system PERLODES, Version 3.3.

    Google Scholar 

  72. Walters Jr. K.R., Sformo T., Barnes B.M. & Duman J.G. 2009. Freeze tolerance in an arctic Alaska stonefly. J. Exp. Biol. 212(Pt 2): 305–312. DOI: 10.1242/jeb.020701

    PubMed  Article  Google Scholar 

  73. Ward J.V. 1982. Ecological aspects of stream regulation: Responses in downstream lotic reaches. Water Pollut. Manage. Rev. 2: 1–26.

    Google Scholar 

  74. Ward J.V. 1985. Thermal characteristics of running waters. Hydrobiologia 125(1): 31–46. DOI: 10.1007/BF00045924

    Article  Google Scholar 

  75. Ward J.V. 1992. Aquatic insect ecology: 1. Biology and Habitat. John Wiley and Sons, Inc., New York-London, 438 pp. ISBN: 0-471-55007-8

    Google Scholar 

  76. Ward J.V. & Dufford R.G. 1979. Longitudinal and seasonal distribution of macroinvertebrates and epilithic algae in a Colorado springbrook-pond system. Arch. Hydrobiol. 86(3): 284–321.

    Google Scholar 

  77. Waringer J. & Graf W. 1997. Atlas der Östereichischen Köcher-fliegenlarven. Facultas Universität Verlag, Wien, Austria, 286 pp. ISBN-10: 3850764117, ISBN-13: 978-3850764117

    Google Scholar 

  78. Williams D.D. & Feltmate B.W. 1992. Aquatic Insects. CAB International, Wallingford, 358 pp. ISBN: 0-85198 -782-6

    Google Scholar 

  79. Wooton J.T., Parker M. & Power M.E. 1996. Effects of disturbance on river food webs. Science 273(5281): 1558–1561. DOI: 10.1126/science.273.5281.1558

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniela Kalaninová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalaninová, D., Bulánková, E. & Šporka, F. Caddisflies (Trichoptera) as good indicators of environmental stress in mountain lotic ecosystems. Biologia 69, 1030–1045 (2014). https://doi.org/10.2478/s11756-014-0405-5

Download citation

Key words

  • Trichoptera
  • the High Tatras
  • functional groups
  • windstorm
  • diversity
  • temperature