Advertisement

Biologia

, Volume 69, Issue 6, pp 799–805 | Cite as

Correlation between body size and fatty acid and essential amino acid composition of round goby (Neogobius melanostomus) and monkey goby (Neogobius fluviatilis) from the Rhine River (Germany)

  • Mohammad Reza GhomiEmail author
  • Eric Von Elert
  • Jost Borcherding
  • Andreas Uhde
  • Patrick Fink
Full Paper Section Zoology
  • 89 Downloads

Abstract

In this study correlations between body size and muscle fatty and amino acid content of two species of goby, round goby (Neogobius melanostomus) and monkey goby (Neogobius fluviatilis) caught from river Rhine (Germany) were investigated. Among saturated fatty acids (SFAs), mono- (MUFA) and polyunsaturated fatty acids (PUFAs) only SFAs were significantly higher in round goby than monkey goby (P < 0.05). In general, the correlation between body size of both gobies and the content of most of the individual fatty acids was not significant. In monkey goby, the content of palmitic acid (C16:0) and oleic acid (C18:1 n-9) was positively correlated with weight (r = 0.43) and total length (r = −0.58), respectively, and the content of docosahexaenoic acid (DHA) increased with condition factor (r = 0.50). The content of threonine, arginine, valine, phenylalanine and isoleucine in monkey goby was higher than those of round goby (P < 0.05). In round goby the three essential amino acids arginine, valine and leucine were positively (P < 0.05) correlated with body length, which indicates that longer round gobies are of higher nutritional value.

Key words

fatty acid amino acid body size correlation round goby monkey goby 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdoli A., Allahyari S., Kiabi B.H., Ghelichi A., Mostafavi H., Aghili S.M. & Rasooli P. 2009. Length-weight relationships for seven Gobiid fish species in the southeastern Caspian Sea basin, Iran. J. Appl. Ichthyol. 25(6): 785–786. DOI: 10.1111/j.1439-0426.2009.01278.xCrossRefGoogle Scholar
  2. Adeyeye E.I. 2009. Amino acid composition of three species of Nigerian fish: Clarias anguillaris, Oreochromis niloticus and Cynoglossus senegalensis. Food Chemistry 113(1): 43–46. DOI: 10.1016/j.foodchem.2008.07.007CrossRefGoogle Scholar
  3. Borcherding J., Dolina M., Heermann L., Knutzen P., Kruger S., Matern S., van Treeck R. & Gertzen S. 2013. Feeding and niche differentiation in three invasive gobies in the Lower Rhine, Germany. Limnologica 43(1): 49–58. DOI: 10.1016/j.limno.2012.08.003CrossRefGoogle Scholar
  4. Borcherding J., Staas S., Krüger S., Ondračková M., Šlapanský L. & Jurajda P. 2011. Non-native Gobiid species in the lower River Rhine (Germany): recent range extensions and densities. J. Appl. Ichthyol. 27(1): 153–155. DOI: 10.1111/j.1439-0426.2010.01662.xCrossRefGoogle Scholar
  5. Fink P., Pflitsch C. & Marin K. 2011. Dietary essential amino acids affect the reproduction of the keystone herbivore Daphnia pulex. PLoS One 6(12): e28498. DOI: 10.1371/journal.pone.0028498PubMedCentralPubMedCrossRefGoogle Scholar
  6. Gam L.H., Leow C.Y. & Baie S. 2005. Amino acid composition of snakehead fish (Channa striatus) of various sizes obtained at different times of year. Malaysian Journal of Pharmaceutical Sciences 3(2): 19–30.Google Scholar
  7. Ghomi M.R., Dezhabad A., Sam Dalirie M., Nikoo M., Toudar S., Sohrabnejad M. & Babaei Z. 2012a. Nutritional properties of kutum (Rutilus frisii kutum, Kamensky, 1901), silver carp (Hypophthalmichthys molitrix) and rainbow trout (Oncorhynchus mykiss) correlated with body weight. Arch. Pol. Fish. 20(4): 275–280. DOI: 10.2478/v10086-012-0031-1CrossRefGoogle Scholar
  8. Ghomi M.R., Nikoo M. & Babaei Z. 2012b. Fatty acid composition in farmed great sturgeon Huso huso. Comp. Clin. Pathol. 21(1): 111–114. DOI: 10.1007/s00580-011-1228-1CrossRefGoogle Scholar
  9. Ghomi M.R., Nikoo M. & Sohrabnejad M. 2013. Effect of alive weight on body composition and fatty acid content of farmed beluga sturgeon (Huso huso). Int. Aquat. Res. 5: 6. DOI: 10.1186/2008-6970-5-6CrossRefGoogle Scholar
  10. Huynh M.D. & Kitts D.D. 2009. Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chemistry 114(3): 912–918. DOI: 10.1016/j.foodchem.2008.10.038CrossRefGoogle Scholar
  11. Jacobsen C, Undeland I., Storrø I, Rustad T., Hedges N. & Medina I. 2008. Preventing lipid oxidation in seafood, pp. 426–460. In: Bůrresen T. (ed.), Improving Seafood Products for the Consumer, Woodhead Publishing Limited, Cambridge, England, 608 pp. ISBN-10: 1420074342, ISBN-13: 978-1420074345CrossRefGoogle Scholar
  12. Jankowska B., Zakes Z., Zmijwski T. & Szczepkowski M. 2010. Fatty acid profile of muscles, liver and mesenteric fat in wild and reared perch (Perca fluviatilis L.). Food Chemistry 118(3): 764–768. DOI: 10.1016/j.foodchem.2009.05.055CrossRefGoogle Scholar
  13. Kaushik S. 1998. Whole body amino acid composition of European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata) and turbot (Psetta maxima) with an estimation of their IAA requirement profiles. Aquatic Living Resources 11(5): 355–358. DOI: 10.1016/S0990-7440(98)80007-7CrossRefGoogle Scholar
  14. Kim J.D. & Lall S.P. 2000. Amino acid composition of whole body tissue of Atlantic halibut (Hippoglossus hippoglossus), yellowtail flounder (Pleuronectes ferruginea) and Japanese flounder (Paralichthys olivaceus). Aquaculture 187(3–4): 367–373. DOI: 10.1016/S0044-8486(00)00322-7CrossRefGoogle Scholar
  15. MacInnis A.J. & Corkum L.D. 2000. Fecundity and reproductive season of the round goby Neogobius melanostomus in the upper Detroit River. Trans. Amer. Fish. Soc. 129(1): 136–144. DOI: 10.1577/1548-8659(2000)CrossRefGoogle Scholar
  16. Memon N.N., Talpur F.N., Bhanger M.I. & Balouch A. 2011. Changes in fatty acid composition in muscle of three farmed carp fish species (Labeo rohita, Cirrhinus mrigala, Catla catla) raised under the same conditions. Food Chemistry 126(2): 405–410. DOI: 10.1016/j.foodchem.2010.10.107CrossRefGoogle Scholar
  17. Mozaffarian D. & Wu J.H.Y. 2011. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J. Amer. Coll. Cardiol. 58(20): 2047–2067. DOI: 10.1016/j.jacc.2011.06.063CrossRefGoogle Scholar
  18. Özogul Y., Özogul F. & Alagoz S. 2007. Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of turkey: A comparative study. Food Chemistry 103(1): 217–223. DOI: 10.1016/j.foodchem.2006.08.009CrossRefGoogle Scholar
  19. Prato E. & Biandolino F. 2012. Total lipid content and fatty acid composition of commercially important fish species from the Mediterranean, Mar Grande Sea. Food Chemistry 131(4): 1233–1239. DOI: 10.1016/j.foodchem.2011.09.110CrossRefGoogle Scholar
  20. Simopoulos A.P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56(8): 365–379. DOI: 10.1016/S0753-3322(02)00253-6PubMedCrossRefGoogle Scholar
  21. Spikmans F. & van Kessel N. 2010. Plaag/risico analyses en habitatgebruik van exoten in de grote rivier [Nuissance/risk analysisand habitat use of exotics in the large river]. In: 26th Meetingof Vissennetwerk, 3 June 2010, Bilthoven, the Netherlands.Google Scholar
  22. Teixeira-de Mello F., Gonzalez-Bergonzoni I., Viana F. & Saizar C. 2011. Length-weight relationships of 26 fish species from the middle section of the Negro River (Tacuarembo’-Durazno, Uruguay). J. Appl. Ichthyol. 27(6):1413–1415. DOI: 10.1111/j.1439-0426.2011.01810.xCrossRefGoogle Scholar
  23. Van Kessel N., Dorenbosch M. & Spikmans F. 2009. First record of Pontian monkey goby, Neogobius fluviatilis (Pallas, 1814), in the Dutch Rhine. Aquatic Invasions 4(2): 421–424. DOI: 10.3391/ai.2009.4.2.24CrossRefGoogle Scholar
  24. Zare P., Moodi S., Masudinodushan J. & Abdoli A. 2011. Length-weight and length-length relationships of three fish species (Cyprinidae) from Chahnimeh reservoirs, Zabol, in eastern Iran. J. Appl. Ichthyol. 27(6): 1425–1426. DOI: 10.1111/j.1439-0426.2011.01812.xCrossRefGoogle Scholar
  25. Zuriani A., Somchit M.N., Solihah M.H., Goh Y.M., Arifah A.K., Zakaria M.S., Somchit N., Rajion M.A., Zakaria Z.A. & MatJias A.M. 2006. Fatty acid and amino acid composition of three local Malaysian Channa spp. fish. Food Chemistry 97(4): 674–678. DOI: 10.1016/j.foodchem.2005.04.031CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Mohammad Reza Ghomi
    • 1
    • 2
    Email author
  • Eric Von Elert
    • 1
  • Jost Borcherding
    • 3
  • Andreas Uhde
    • 4
  • Patrick Fink
    • 1
  1. 1.Zoological InstituteUniversity of CologneCologneGermany
  2. 2.Department of Fisheries SciencesIslamic Azad University-Tonekabon BranchTonekabonIran
  3. 3.General Ecology and Limnology, Zoological InstituteUniversity of Cologne, Ecological Research Station GrietherbuschCologneGermany
  4. 4.Institute for BiochemistryUniversity of CologneCologneGermany

Personalised recommendations