Skip to main content

Recent insight in α-glucan metabolism in probiotic bacteria

Abstract

α-Glucans from bacterial exo-polysaccharides or diet, e.g., resistant starch, legumes and honey are abundant in the human gut and fermentation of resistant fractions of these α-glucans by probiotic lactobacilli and bifidobacteria impacts human health positively. The ability to degrade polymeric α-glucans is confined to few strains encoding extracellular amylolytic activities of glycoside hydrolase (GH) family 13. Debranching pullulanases of the subfamily GH13_14 are the most common extracellular GH13 enzymes in lactobacilli, whereas corresponding enzymes are mainly α-amylases and amylopullulanases in bifidobacteria. Extracellular GH13 enzymes from both genera are frequently modular and possess starch binding domains, which are important for efficient catalysis and possibly to mediate attachment of cells to starch granules. α-1,6-Linked glucans, e.g., isomalto-oligosaccharides are potential prebiotics. The enzymes targeting these glucans are the most abundant intracellular GHs in bifidobacteria and lactobacilli. A phosphoenolpyruvate-dependent phosphotransferase system and a GH4 phospho-α-glucosidase are likely involved in metabolism of isomaltose and isomaltulose in probiotic lactobacilli based on transcriptional analysis. This specificity within GH4 is unique for lactobacilli, whereas canonical GH13 31 α-1,6-glucosidases active on longer α-1,6-gluco-oligosaccharides are ubiquitous in bifidobacteria and lactobacilli. Malto-oligosaccharide utilization operons encode more complex, diverse, and less biochemically understood activities in bifidobacteria compared to lactobacilli, where important members have been recently described at the molecular level. This review presents some aspects of α-glucan metabolism in probiotic bacteria and highlights vague issues that merit experimental effort, especially oligosaccharide uptake and the functionally unassigned enzymes, featuring in this important facet of glycan turnover by members of the gut microbiota.

This is a preview of subscription content, access via your institution.

Abbreviations

ABC:

ATP-binding cassette

CAZy:

Carbohydrate-Active enZymes database

CBM:

carbohydrate binding module

GH:

glycoside hydrolase

GI:

gastrointestinal tract

GT:

glycosyl transferase family

IMO:

isomaltooligosaccharide

PTS:

phosphotransferase transport system

RS:

resistant starch

References

  1. Abou Hachem M., Andersen J.M., Barrangou R., Møller M.S., Fredslund F., Majumder A., Ejby M., Lahtinen S.J., Jacobsen S., Lo Leggio L., Goh Y.J., Klaenhammer T.R. & Svensson B. 2013. Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. Biocatal. Biotransform. 31: 226–235.

    CAS  Article  Google Scholar 

  2. Andersen J.M., Barrangou R., Abou Hachem M., Lahtinen S., Goh Y.J., Svensson B. & Klaenhammer T.R. 2012. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM. PloS One 7: e44409.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Andersen J.M., Barrangou R., Abou Hachem M., Lahtinen S., Goh Y.J., Svensson B. & Klaenhammer T.R. 2013. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics 14: 312.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H.B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E.G., Wang J., Guarner F., Pedersen O., de Vos W.M., Brunak S., Dore J., Weissenbach J., Ehrlich S.D. & Bork P. 2011. Enterotypes of the human gut microbiome. Nature 473: 174–180.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Barrangou R., Briczinski E.P., Traeger L.L., Loquasto J.R., Richards M., Horvath P., Coute-Monvoisin A.C., Leyer G., Rendulic S., Steele J.L., Broadbent J.R., Oberg T., Dudley E.G., Schuster S., Romero D.A. & Roberts R.F. 2009. Comparison of the complete genome sequences of Bifidobacterium animalis subsp lactis DSM 10140 and Bl-04. J. Bacteriol. 191: 4144–4151.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Belanger A.E. & Hatfull G.F. 1999. Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J. Bacteriol. 181: 6670–6678.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Blazek J. & Gilbert E.P. 2010. Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules 11: 3275–3289.

    CAS  PubMed  Article  Google Scholar 

  8. Busuioc M., Mackiewicz K., Buttaro B.A. & Piggot P.J. 2009. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J. Bacteriol. 191: 7315–7322.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. Cameron E.A., Maynard M.A., Smith C.J., Smith T.J., Koropatkin N.M. & Martens E.C. 2012. Multidomain carbohydratebinding proteins involved in Bacteroides thetaiotaomicron starch metabolism. J. Biol. Chem. 287: 34614–34625.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233–D238.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. Cantarel B.L., Lombard V. & Henrissat B. 2012. Complex carbohydrate utilization by the healthy human microbiome. PloS One 7: e28742.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Christiansen C., Abou Hachem M., Janecek S., Viksø-Nielsen A., Blennow A. & Svensson B. 2009. The carbohydrate-binding module family 20 — diversity, structure, and function. FEBS J. 276: 5006–5029.

    CAS  PubMed  Article  Google Scholar 

  13. Clemente J.C., Ursell L.K., Parfrey L.W. & Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258–1270.

    CAS  PubMed  Article  Google Scholar 

  14. de Vrese M. & Schrezenmeir J. 2008. Probiotics, prebiotics, and synbiotics, pp. 1–66. In: Stahl U.D.U.E.B.N.E. (ed.) Food Biotechnology.

    Chapter  Google Scholar 

  15. Duboc P. & Mollet B. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759–768.

    CAS  Article  Google Scholar 

  16. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E. & Relman D.A. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.

    PubMed Central  PubMed  Article  Google Scholar 

  17. Eydallin G., Montero M., Almagro G., Sesma M.T., Viale A.M., Munoz F.J., Rahimpour M., Baroja-Fernandez E. & Pozueta-Romer J. 2010. Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli. DNA Res. 17: 61–71.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Eydallin G., Viale A.M., Moran-Zorzano M.T., Munoz F.J., Montero M., Baroja-Fernandez E. & Pozueta-Romero J. 2007. Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett. 581: 2947–2953.

    CAS  PubMed  Article  Google Scholar 

  19. Faith J.J., Guruge J.L., Charbonneau M., Subramanian S., Seedorf H., Goodman A.L., Clemente J.C., Knight R., Heath A.C., Leibel R.L., Rosenbaum M. & Gordon J.I. 2013. The long-term stability of the human gut microbiota. Science 341: 44–53.

    CAS  Article  Google Scholar 

  20. Flint H.J., Duncan S.H., Scott K.P. & Louis P. 2007. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9: 1101–1111.

    CAS  PubMed  Article  Google Scholar 

  21. Fredslund F., Abou Hachem M., Larsen R.J., Sørensen P.G., Coutinho P.M., Lo Leggio L. & Svensson B. 2011. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J. Mol. Biol. 412: 466–480.

    CAS  PubMed  Article  Google Scholar 

  22. Fuentes-Zaragoza E., Sanchez-Zapata E., Sendra E., Sayas E., Navarro C., Fernandez-Lopez J. & Perez-Alvarez J.A. 2011. Resistant starch as prebiotic: a review. Starch 63: 406–415.

    CAS  Article  Google Scholar 

  23. Goffin D., Delzenne N., Blecker C., Hanon E., Deroanne C. & Paquot M. 2011. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit. Rev. Food Sci. Nutr. 51: 394–409.

    PubMed  Article  Google Scholar 

  24. Goh Y.J. & Klaenhammer T.R. 2013. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon. Mol. Microbiol. 89: 1187–1200.

    CAS  PubMed  Article  Google Scholar 

  25. Jones S.A., Jorgensen M., Chowdhury F.Z., Rodgers R., Hartline J., Leatham M.P., Struve C., Krogfelt K.A., Cohen P.S. & Conway T. 2008. Glycogen and maltose utilization by Escherichia coli O157: H7 in the mouse intestine. Infect. Immun. 76: 2531–2540.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Kaneko T., Kohmoto T., Kikuchi H., Shiota M., Iino H. & Mitsuoka T. 1994. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria. Biosci. Biotechnol. Biochem. 58: 2288–2290.

    CAS  Article  Google Scholar 

  27. Knudsen A., van Zanten G.C., Jensen S.L., Forssten S.D., Saarinen M., Lahtinen S.J., Bandsholm O., Svensson B., Jespersen L. & Blennow A. 2013. Comparative fermentation of insoluble carbohydrates in an in vitro human feces model spiked with Lactobacillus acidophilus NCFM. Starch-Stärke 65: 346–353.

    CAS  Google Scholar 

  28. Kootte R.S., Vrieze A., Holleman F., Dallinga-Thie G.M., Zoetendal E.G., de Vos W.M., Groen A.K., Hoekstra J.B.L., Stroes E.S. & Nieuwdorp M. 2012. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes. Metab. 14: 112–120.

    CAS  PubMed  Article  Google Scholar 

  29. Ley R.E., Hamady M., Lozupone C., Turnbaugh P.J., Ramey R.R., Bircher J.S., Schlegel M.L., Tucker T.A., Schrenzel M.D., Knight R. & Gordon J.I. 2008. Evolution of mammals and their gut microbes. Science 320: 1647–1651.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Leyer G.J., Li S., Mubasher M.E., Reifer C. & Ouwehand A.C. 2009. Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124: E172–E179.

    PubMed  Article  Google Scholar 

  31. Loquasto J.R., Barrangou R., Dudley E.G., Stahl B., Chen C. & Roberts R.F. 2013. Bifidobacterium animalis subsp. lactis ATCC 27673 is a genomically unique strain within its conserved subspecies. Appl. Environ. Microbiol. 79: 6903–6910.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Lozupone C.A., Hamady M., Cantarel B.L., Coutinho P.M., Henrissat B., Gordon J.I. & Knight R. 2008. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl. Acad. Sci. USA 105: 15076–15081.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. McFall-Ngai M., Hadfield M.G., Bosch T.C.G., Carey H.V., Domazet-Loso T., Douglas A.E., Dubilier N., Eberl G., Fukami T., Gilbert S.F., Hentschel U., King N., Kjelleberg S., Knoll A.H., Kremer N., Mazmanian S.K., Metcalf J.L., Nealson K., Pierce N.E., Rawls J.F., Reid A., Ruby E.G., Rumpho M., Sanders J.G., Tautz D. & Wernegreen J.J. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110: 3229–3236.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Møller M.S., Fredslund F., Majumder A., Nakai H., Poulsen J.C.N., Lo Leggio L., Svensson B. & Abou Hachem M. 2012. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J. Bacteriol. 194: 4249–4259.

    PubMed Central  PubMed  Article  Google Scholar 

  35. Morgan X.C., Segata N. & Huttenhower C. 2013. Biodiversity and functional genomics in the human microbiome. Trends Genet. 29: 51–58.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Muegge B.D., Kuczynski J., Knights D., Clemente J.C., Gonzalez A., Fontana L., Henrissat B., Knight R. & Gordon J.I. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332: 970–974.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. Nakai H., Baumann M.J., Petersen B.O., Westphal Y., Schols H., Dilokpimol A., Abou Hachem M., Lahtinen S.J., Duus J.O. & Svensson B. 2009. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel α-glucosides through reverse phosphorolysis by maltose phosphorylase. FEBS J. 276: 7353–7365.

    CAS  PubMed  Article  Google Scholar 

  38. Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W. & Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262–1267.

    CAS  PubMed  Article  Google Scholar 

  39. Petrova P., Petrov K. & Stoyancheva G. 2013. Starch-modifying enzymes of lactic acid bacteria — structures, properties, and applications. Starch-Stärke 65: 34–47.

    CAS  Google Scholar 

  40. Rastall R.A. 2010. Functional oligosaccharides: application and manufacture. Annu. Rev. Food Scie. Technol. 1: 305–339.

    CAS  Article  Google Scholar 

  41. Rodriguez-Sanoja R., Ruiz B., Guyot J.P. & Sanchez S. 2005. Starch-binding domain affects catalysis in two Lactobacillus α-amylases. Appl. Environ. Microbiol. 71: 297–302.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Sanders M.E. & Klaenhammer T.R. 2001. Invited review: The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319–331.

    CAS  PubMed  Article  Google Scholar 

  43. Sanz M.L., Gibson G.R. & Rastall R.A. 2005. Influence of disaccharide structure on prebiotic selectivity in vitro. J. Agric. Food Chem. 53: 5192–5199.

    CAS  PubMed  Article  Google Scholar 

  44. Sarbini S.R., Kolida S., Gibson G.R. & Rastall R.A. 2013. In vitro fermentation of commercial α-gluco-oligosaccharide by faecal microbiota from lean and obese human subjects. Br. J. Nutr. 109: 1980–1989.

    CAS  PubMed  Article  Google Scholar 

  45. Scott K.P., Gratz S.W., Sheridan P.O., Flint H.J. & Duncan S.H. 2013. The influence of diet on the gut microbiota. Pharmacol. Res. 69: 52–60.

    CAS  PubMed  Article  Google Scholar 

  46. Sommer F. & Baeckhed F. 2012. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11: 227–238.

    Article  Google Scholar 

  47. Stam M.R., Danchin E.G.J., Rancurel C., Coutinho P.M. & Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19: 555–562.

    CAS  PubMed  Article  Google Scholar 

  48. Tang M.L.K., Lahtinen S.J. & Boyle R.J. 2010. Probiotics and prebiotics: clinical effects in allergic disease. Curr. Opin. Pediatr. 22: 626–634.

    PubMed  Google Scholar 

  49. Tester R.F., Karkalas J. & Qi X. 2004. Starch — composition, fine structure and architecture. J. Cereal Sci. 39: 151–165.

    CAS  Article  Google Scholar 

  50. Thompson J., Jakubovics N., Abraham B., Hess S. & Pikis A. 2008. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334. J. Bacteriol. 190: 3362–3373.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. Vigsnæs L.K., Nakai H., Hemmingsen L., Andersen J.M., Lahtinen S.J., Rasmussen L.E., Abou Hachem M., Petersen B.O., Duus J.O., Meyer A.S., Licht T.R. & Svensson B. 2013. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis. Food Funct. 4: 784–793.

    PubMed  Article  Google Scholar 

  52. Wallace T.C., Guarner F., Madsen K., Cabana M.D., Gibson G., Hentges E. & Sanders M.E. 2011. Human gut microbiota and its relationship to health and disease. Nutr. Rev. 69: 392–403.

    PubMed  Article  Google Scholar 

  53. Whelan K. 2011. Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr. Opin. Clin. Nutr. Metab. Care 14: 581–587.

    PubMed  Article  Google Scholar 

  54. Yen C.H., Tseng Y.H., Kuo Y.W., Lee M.C. & Chen H.L. 2011. Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people — a placebocontrolled, diet-controlled trial. Nutrition 27: 445–450.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maher Abou Hachem.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Møller, M.S., Goh, Y.J., Viborg, A.H. et al. Recent insight in α-glucan metabolism in probiotic bacteria. Biologia 69, 713–721 (2014). https://doi.org/10.2478/s11756-014-0367-7

Download citation

Key words

  • prebiotic
  • oligosaccharide uptake
  • ATP-binding cassette transport system
  • phosphotransferase system
  • transcriptional analysis
  • isomalto-oligosaccharide
  • malto-oligosaccharide