, Volume 69, Issue 6, pp 713–721 | Cite as

Recent insight in α-glucan metabolism in probiotic bacteria

  • Marie S. Møller
  • Yong Jun Goh
  • Alexander H. Viborg
  • Joakim M. Andersen
  • Todd R. Klaenhammer
  • Birte Svensson
  • Maher Abou Hachem
Review Section Cellular and Molecular Biology


α-Glucans from bacterial exo-polysaccharides or diet, e.g., resistant starch, legumes and honey are abundant in the human gut and fermentation of resistant fractions of these α-glucans by probiotic lactobacilli and bifidobacteria impacts human health positively. The ability to degrade polymeric α-glucans is confined to few strains encoding extracellular amylolytic activities of glycoside hydrolase (GH) family 13. Debranching pullulanases of the subfamily GH13_14 are the most common extracellular GH13 enzymes in lactobacilli, whereas corresponding enzymes are mainly α-amylases and amylopullulanases in bifidobacteria. Extracellular GH13 enzymes from both genera are frequently modular and possess starch binding domains, which are important for efficient catalysis and possibly to mediate attachment of cells to starch granules. α-1,6-Linked glucans, e.g., isomalto-oligosaccharides are potential prebiotics. The enzymes targeting these glucans are the most abundant intracellular GHs in bifidobacteria and lactobacilli. A phosphoenolpyruvate-dependent phosphotransferase system and a GH4 phospho-α-glucosidase are likely involved in metabolism of isomaltose and isomaltulose in probiotic lactobacilli based on transcriptional analysis. This specificity within GH4 is unique for lactobacilli, whereas canonical GH13 31 α-1,6-glucosidases active on longer α-1,6-gluco-oligosaccharides are ubiquitous in bifidobacteria and lactobacilli. Malto-oligosaccharide utilization operons encode more complex, diverse, and less biochemically understood activities in bifidobacteria compared to lactobacilli, where important members have been recently described at the molecular level. This review presents some aspects of α-glucan metabolism in probiotic bacteria and highlights vague issues that merit experimental effort, especially oligosaccharide uptake and the functionally unassigned enzymes, featuring in this important facet of glycan turnover by members of the gut microbiota.

Key words

prebiotic oligosaccharide uptake ATP-binding cassette transport system phosphotransferase system transcriptional analysis isomalto-oligosaccharide malto-oligosaccharide 



ATP-binding cassette


Carbohydrate-Active enZymes database


carbohydrate binding module


glycoside hydrolase


gastrointestinal tract


glycosyl transferase family




phosphotransferase transport system


resistant starch


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou Hachem M., Andersen J.M., Barrangou R., Møller M.S., Fredslund F., Majumder A., Ejby M., Lahtinen S.J., Jacobsen S., Lo Leggio L., Goh Y.J., Klaenhammer T.R. & Svensson B. 2013. Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. Biocatal. Biotransform. 31: 226–235.CrossRefGoogle Scholar
  2. Andersen J.M., Barrangou R., Abou Hachem M., Lahtinen S., Goh Y.J., Svensson B. & Klaenhammer T.R. 2012. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM. PloS One 7: e44409.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Andersen J.M., Barrangou R., Abou Hachem M., Lahtinen S., Goh Y.J., Svensson B. & Klaenhammer T.R. 2013. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics 14: 312.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H.B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E.G., Wang J., Guarner F., Pedersen O., de Vos W.M., Brunak S., Dore J., Weissenbach J., Ehrlich S.D. & Bork P. 2011. Enterotypes of the human gut microbiome. Nature 473: 174–180.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barrangou R., Briczinski E.P., Traeger L.L., Loquasto J.R., Richards M., Horvath P., Coute-Monvoisin A.C., Leyer G., Rendulic S., Steele J.L., Broadbent J.R., Oberg T., Dudley E.G., Schuster S., Romero D.A. & Roberts R.F. 2009. Comparison of the complete genome sequences of Bifidobacterium animalis subsp lactis DSM 10140 and Bl-04. J. Bacteriol. 191: 4144–4151.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Belanger A.E. & Hatfull G.F. 1999. Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J. Bacteriol. 181: 6670–6678.PubMedCentralPubMedGoogle Scholar
  7. Blazek J. & Gilbert E.P. 2010. Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules 11: 3275–3289.PubMedCrossRefGoogle Scholar
  8. Busuioc M., Mackiewicz K., Buttaro B.A. & Piggot P.J. 2009. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J. Bacteriol. 191: 7315–7322.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cameron E.A., Maynard M.A., Smith C.J., Smith T.J., Koropatkin N.M. & Martens E.C. 2012. Multidomain carbohydratebinding proteins involved in Bacteroides thetaiotaomicron starch metabolism. J. Biol. Chem. 287: 34614–34625.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233–D238.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cantarel B.L., Lombard V. & Henrissat B. 2012. Complex carbohydrate utilization by the healthy human microbiome. PloS One 7: e28742.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Christiansen C., Abou Hachem M., Janecek S., Viksø-Nielsen A., Blennow A. & Svensson B. 2009. The carbohydrate-binding module family 20 — diversity, structure, and function. FEBS J. 276: 5006–5029.PubMedCrossRefGoogle Scholar
  13. Clemente J.C., Ursell L.K., Parfrey L.W. & Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258–1270.PubMedCrossRefGoogle Scholar
  14. de Vrese M. & Schrezenmeir J. 2008. Probiotics, prebiotics, and synbiotics, pp. 1–66. In: Stahl U.D.U.E.B.N.E. (ed.) Food Biotechnology.CrossRefGoogle Scholar
  15. Duboc P. & Mollet B. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759–768.CrossRefGoogle Scholar
  16. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E. & Relman D.A. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Eydallin G., Montero M., Almagro G., Sesma M.T., Viale A.M., Munoz F.J., Rahimpour M., Baroja-Fernandez E. & Pozueta-Romer J. 2010. Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli. DNA Res. 17: 61–71.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Eydallin G., Viale A.M., Moran-Zorzano M.T., Munoz F.J., Montero M., Baroja-Fernandez E. & Pozueta-Romero J. 2007. Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett. 581: 2947–2953.PubMedCrossRefGoogle Scholar
  19. Faith J.J., Guruge J.L., Charbonneau M., Subramanian S., Seedorf H., Goodman A.L., Clemente J.C., Knight R., Heath A.C., Leibel R.L., Rosenbaum M. & Gordon J.I. 2013. The long-term stability of the human gut microbiota. Science 341: 44–53.CrossRefGoogle Scholar
  20. Flint H.J., Duncan S.H., Scott K.P. & Louis P. 2007. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9: 1101–1111.PubMedCrossRefGoogle Scholar
  21. Fredslund F., Abou Hachem M., Larsen R.J., Sørensen P.G., Coutinho P.M., Lo Leggio L. & Svensson B. 2011. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J. Mol. Biol. 412: 466–480.PubMedCrossRefGoogle Scholar
  22. Fuentes-Zaragoza E., Sanchez-Zapata E., Sendra E., Sayas E., Navarro C., Fernandez-Lopez J. & Perez-Alvarez J.A. 2011. Resistant starch as prebiotic: a review. Starch 63: 406–415.CrossRefGoogle Scholar
  23. Goffin D., Delzenne N., Blecker C., Hanon E., Deroanne C. & Paquot M. 2011. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit. Rev. Food Sci. Nutr. 51: 394–409.PubMedCrossRefGoogle Scholar
  24. Goh Y.J. & Klaenhammer T.R. 2013. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon. Mol. Microbiol. 89: 1187–1200.PubMedCrossRefGoogle Scholar
  25. Jones S.A., Jorgensen M., Chowdhury F.Z., Rodgers R., Hartline J., Leatham M.P., Struve C., Krogfelt K.A., Cohen P.S. & Conway T. 2008. Glycogen and maltose utilization by Escherichia coli O157: H7 in the mouse intestine. Infect. Immun. 76: 2531–2540.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kaneko T., Kohmoto T., Kikuchi H., Shiota M., Iino H. & Mitsuoka T. 1994. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria. Biosci. Biotechnol. Biochem. 58: 2288–2290.CrossRefGoogle Scholar
  27. Knudsen A., van Zanten G.C., Jensen S.L., Forssten S.D., Saarinen M., Lahtinen S.J., Bandsholm O., Svensson B., Jespersen L. & Blennow A. 2013. Comparative fermentation of insoluble carbohydrates in an in vitro human feces model spiked with Lactobacillus acidophilus NCFM. Starch-Stärke 65: 346–353.Google Scholar
  28. Kootte R.S., Vrieze A., Holleman F., Dallinga-Thie G.M., Zoetendal E.G., de Vos W.M., Groen A.K., Hoekstra J.B.L., Stroes E.S. & Nieuwdorp M. 2012. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes. Metab. 14: 112–120.PubMedCrossRefGoogle Scholar
  29. Ley R.E., Hamady M., Lozupone C., Turnbaugh P.J., Ramey R.R., Bircher J.S., Schlegel M.L., Tucker T.A., Schrenzel M.D., Knight R. & Gordon J.I. 2008. Evolution of mammals and their gut microbes. Science 320: 1647–1651.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Leyer G.J., Li S., Mubasher M.E., Reifer C. & Ouwehand A.C. 2009. Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124: E172–E179.PubMedCrossRefGoogle Scholar
  31. Loquasto J.R., Barrangou R., Dudley E.G., Stahl B., Chen C. & Roberts R.F. 2013. Bifidobacterium animalis subsp. lactis ATCC 27673 is a genomically unique strain within its conserved subspecies. Appl. Environ. Microbiol. 79: 6903–6910.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lozupone C.A., Hamady M., Cantarel B.L., Coutinho P.M., Henrissat B., Gordon J.I. & Knight R. 2008. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl. Acad. Sci. USA 105: 15076–15081.PubMedCentralPubMedCrossRefGoogle Scholar
  33. McFall-Ngai M., Hadfield M.G., Bosch T.C.G., Carey H.V., Domazet-Loso T., Douglas A.E., Dubilier N., Eberl G., Fukami T., Gilbert S.F., Hentschel U., King N., Kjelleberg S., Knoll A.H., Kremer N., Mazmanian S.K., Metcalf J.L., Nealson K., Pierce N.E., Rawls J.F., Reid A., Ruby E.G., Rumpho M., Sanders J.G., Tautz D. & Wernegreen J.J. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110: 3229–3236.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Møller M.S., Fredslund F., Majumder A., Nakai H., Poulsen J.C.N., Lo Leggio L., Svensson B. & Abou Hachem M. 2012. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J. Bacteriol. 194: 4249–4259.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Morgan X.C., Segata N. & Huttenhower C. 2013. Biodiversity and functional genomics in the human microbiome. Trends Genet. 29: 51–58.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Muegge B.D., Kuczynski J., Knights D., Clemente J.C., Gonzalez A., Fontana L., Henrissat B., Knight R. & Gordon J.I. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332: 970–974.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Nakai H., Baumann M.J., Petersen B.O., Westphal Y., Schols H., Dilokpimol A., Abou Hachem M., Lahtinen S.J., Duus J.O. & Svensson B. 2009. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel α-glucosides through reverse phosphorolysis by maltose phosphorylase. FEBS J. 276: 7353–7365.PubMedCrossRefGoogle Scholar
  38. Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W. & Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262–1267.PubMedCrossRefGoogle Scholar
  39. Petrova P., Petrov K. & Stoyancheva G. 2013. Starch-modifying enzymes of lactic acid bacteria — structures, properties, and applications. Starch-Stärke 65: 34–47.Google Scholar
  40. Rastall R.A. 2010. Functional oligosaccharides: application and manufacture. Annu. Rev. Food Scie. Technol. 1: 305–339.CrossRefGoogle Scholar
  41. Rodriguez-Sanoja R., Ruiz B., Guyot J.P. & Sanchez S. 2005. Starch-binding domain affects catalysis in two Lactobacillus α-amylases. Appl. Environ. Microbiol. 71: 297–302.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sanders M.E. & Klaenhammer T.R. 2001. Invited review: The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319–331.PubMedCrossRefGoogle Scholar
  43. Sanz M.L., Gibson G.R. & Rastall R.A. 2005. Influence of disaccharide structure on prebiotic selectivity in vitro. J. Agric. Food Chem. 53: 5192–5199.PubMedCrossRefGoogle Scholar
  44. Sarbini S.R., Kolida S., Gibson G.R. & Rastall R.A. 2013. In vitro fermentation of commercial α-gluco-oligosaccharide by faecal microbiota from lean and obese human subjects. Br. J. Nutr. 109: 1980–1989.PubMedCrossRefGoogle Scholar
  45. Scott K.P., Gratz S.W., Sheridan P.O., Flint H.J. & Duncan S.H. 2013. The influence of diet on the gut microbiota. Pharmacol. Res. 69: 52–60.PubMedCrossRefGoogle Scholar
  46. Sommer F. & Baeckhed F. 2012. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11: 227–238.CrossRefGoogle Scholar
  47. Stam M.R., Danchin E.G.J., Rancurel C., Coutinho P.M. & Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19: 555–562.PubMedCrossRefGoogle Scholar
  48. Tang M.L.K., Lahtinen S.J. & Boyle R.J. 2010. Probiotics and prebiotics: clinical effects in allergic disease. Curr. Opin. Pediatr. 22: 626–634.PubMedGoogle Scholar
  49. Tester R.F., Karkalas J. & Qi X. 2004. Starch — composition, fine structure and architecture. J. Cereal Sci. 39: 151–165.CrossRefGoogle Scholar
  50. Thompson J., Jakubovics N., Abraham B., Hess S. & Pikis A. 2008. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334. J. Bacteriol. 190: 3362–3373.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Vigsnæs L.K., Nakai H., Hemmingsen L., Andersen J.M., Lahtinen S.J., Rasmussen L.E., Abou Hachem M., Petersen B.O., Duus J.O., Meyer A.S., Licht T.R. & Svensson B. 2013. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis. Food Funct. 4: 784–793.PubMedCrossRefGoogle Scholar
  52. Wallace T.C., Guarner F., Madsen K., Cabana M.D., Gibson G., Hentges E. & Sanders M.E. 2011. Human gut microbiota and its relationship to health and disease. Nutr. Rev. 69: 392–403.PubMedCrossRefGoogle Scholar
  53. Whelan K. 2011. Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr. Opin. Clin. Nutr. Metab. Care 14: 581–587.PubMedCrossRefGoogle Scholar
  54. Yen C.H., Tseng Y.H., Kuo Y.W., Lee M.C. & Chen H.L. 2011. Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people — a placebocontrolled, diet-controlled trial. Nutrition 27: 445–450.PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Marie S. Møller
    • 1
  • Yong Jun Goh
    • 2
  • Alexander H. Viborg
    • 1
  • Joakim M. Andersen
    • 1
  • Todd R. Klaenhammer
    • 2
  • Birte Svensson
    • 1
  • Maher Abou Hachem
    • 1
  1. 1.Enzyme and Protein Chemistry, Department of Systems BiologyTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityRaleighUSA

Personalised recommendations