Skip to main content
Log in

The adaptation responses of bacterial cytoplasmic membrane fluidity in the presence of environmental stress factors — polychlorinated biphenyls and 3-chlorobenzoic acid

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Only bacteria sufficiently resistant to the toxic compounds in their environment can be used for the efficient biodegradation process in order to eliminate a widespread contamination by polychlorinated biphenyls (PCBs). The presence of PCBs results in bacterial controlled rigidification of cytoplasmic membrane. The four bacterial isolates from long-term PCB-contaminated soil (Alcaligenes xylosoxidans, Pseudomonas stutzeri) and sediment (Ochrobactrum anthropi, Pseudomonas veronii) have been used to select the strain most adapted to the PCBs, i.e. with efficient changes in the membrane phospholipid fatty acids. PCBs and their toxic degradation products — the 3-chlorobenzoic acids (3-CBA as the most toxic one) — were added separately to the liquid medium with glucose in two experimental sets: at lag phase and in stationary phase of bacterial growth in order to evaluate the effects of chemicals to cytoplasmic membrane. The main parameter — the changes in fatty acids composition (in the total lipids and the main membrane phospholipid phosphatidyletanolamine) were studied. 3-CBA caused growth inhibition when added at lag phase. However, when added during the stationary growth, inhibition was not observed. Similarly, after addition of PCBs to the stationary growth culture, inhibition of growth was not observed with all tested strains (except for P. stutzeri). This fact indicates the importance of time contact of bacteria during growth phase with xenobiotics. O. anthropi and A. xylosoxidans appeared to be the most adapted to the presence of PCBs (with sufficient membrane adaptation), active under the adverse conditions, and able to survive in the contaminated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3-CBA:

3-chlorobenzoic acid

MM medium:

minimal mineral medium

PCBs:

polychlorinated biphenyls

References

  • Christopherson S.W. & Glass R.L. 1969. Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. J. Dairy Sci. 52: 1289–1290.

    Article  CAS  Google Scholar 

  • Čertík M., Dercová K., Sejáková Z., Finďová M. & Jakubík T. 2003. Efect of polyaromatic hydrocarbons (PAHs) on the membrane lipids of bacterial cell. Biologia 58: 1111–1117.

    Google Scholar 

  • Čertík M. & Shimizu S. 2000. Kinetic analysis of oil biosynthesis by arachidonic acid-producing fungus, Mortierella alpina 1S-4. Appl. Microbiol. Biotechnol. 54: 224–230.

    Article  PubMed  Google Scholar 

  • Denich T.J., Beaudette L.A., Lee H. & Trevor S.J.T. 2003. Effect of selected environmental and physicochemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods 52: 149–182.

    Article  CAS  PubMed  Google Scholar 

  • Dercová K., Vrana B., Baláž Š. & Šándorová A. 1996. Biodegradation and evaporation of polychlorinated biphenyls (PCBs) in liquid medium. J. Ind. Microbiol. 16: 325–329.

    Article  Google Scholar 

  • Dercová K., Šeligová J., Dudášová H., Mikulášovvá M., Šilharová K. & Hucko P. 2009. Characterization of the bottom sediments contaminated with polychlorinated biphenyls: evaluation of ecotoxicity and biodegradability. Int. Biodeter. Biodegr. 63: 440–449.

    Article  Google Scholar 

  • Dudášová H., Lukáčová L., Murínová S. & Dercová K. 2012. Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs). Int. Biodeter. Biodegr. 69: 23–27.

    Article  Google Scholar 

  • Hickey J. 1999. Transformation and fate of polychlorinated biphenyls in soil and sediment, pp. 315–338. In: Adriano D.C., Bollag J.M., Frankenberger W.T. & Sims R.C. (eds), Bioremediation of Contaminated Soil. Soil Science Society of America Inc., USA.

    Google Scholar 

  • Heipieper H.J., Diefenbach R. & Keweloh H. 1992. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58: 1847–1852.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heipieper H.J., Meinhardt F. & Segura A. 2003. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 229: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Heipieper H.J., Weber F.J., Sikkema J., Keweloh H. & de Bont J.A.M. 1994. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12: 409–415.

    Article  CAS  Google Scholar 

  • Kočan A., Petrík J., Jursa S., Chovancová J. & Drobná B. 2001. Environmental contamination with polychlorinated biphenyls in the area of their former manufacture in Slovakia. Chemosphere 43: 596–600.

    Google Scholar 

  • Martínez P., Agulló L. & Hernández M. 2007. Chlorobenzoate inhibits growth and induces stress proteins in the PCBdegrading bacterium Burkholderia xenovorans LB400. Arch. Microbiol. 188: 289–297.

    Article  PubMed  Google Scholar 

  • Megharaj M., Ramakrishnan B., Venkateswarlu K., Sethunathan N. & Naidu R. 2011. Bioremediation approaches for organic pollutants: a critical perspective. Environ. Int. 37: 1362–1375.

    Article  CAS  PubMed  Google Scholar 

  • Mrozik A., Cycoń M. & Piotrowska-Seget Z. 2010. Changes of FAME profiles as a marker of phenol degradation in different soils inoculated with Pseudomonas sp. CF6600. Int. Biodeter. Biodegr. 64: 86–96.

    Article  CAS  Google Scholar 

  • Mrozik A. & Piotrowska-Seget Z. 2010. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol. Res. 165: 363–375.

    Article  CAS  PubMed  Google Scholar 

  • Parnell J.J., Denef V.J., Park J., Tsoi T. & Tiedje J.M. 2010. Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation 21: 147–156.

    Article  CAS  PubMed  Google Scholar 

  • Pepi M., Heipieper H.J., Fischer J., Ruta M., Volterrani M. & Focardi S.E. 2008. Membrane fatty acids adaptive profile in the simultaneous presence of arsenic and toluene in Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5 strains. Extremophiles 12: 343–349.

    Article  CAS  PubMed  Google Scholar 

  • Segura A., Duque E., Msqueda G., Ramos J.L. & Junker F. 1999. Multiple responses of Gram-negative bacteria to organic solvents. Environ. Microbiol. 1: 191–198.

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J., de Bont J.A.M. & Poolman B. 1995. Mechanisms of membrane toxicity of hydrocarbons. FEMS Microbiol. Rev. 59: 201–222.

    CAS  Google Scholar 

  • Unell M., Kabelitz N., Jansson J.K. & Heipieper H.J. 2007. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol. Lett. 266: 138–142.

    Article  CAS  PubMed  Google Scholar 

  • Unterman R., DeFlaun M. & Steffan R. 2000. Advanced in situ bioremediation — a hierarchy of technology choices, pp. 134–145. In: Rehm H.J. & Reed G. (eds) Biotechnology, Environmental Processes II: Soil Decontamination. Wiley-Verlag, Weinheim, Germany.

    Google Scholar 

  • Weber F.J. & de Bont J.A.M. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta 1286: 225–245.

    Article  CAS  PubMed  Google Scholar 

  • Zorádová-Murínová S., Dudášová H., Lukáčová L., Čertík M., Šilharová K., Vrana B. & Dercová K. 2012. Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers. Appl. Microbiol. Biotechnol. 94: 1375–1385.

    Article  PubMed  Google Scholar 

  • Zorádová S., Dudášová H., Lukáčová L., Dercová K. & Čertík M. 2011. The effect of polychlorinated biphenyls (PCBs) on the membrane lipids of Pseudomonas stutzeri. Int. Biodeter. Biodegr. 65: 1019–1023.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavomíra Murínová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murínová, S., Dercová, K., Čertík, M. et al. The adaptation responses of bacterial cytoplasmic membrane fluidity in the presence of environmental stress factors — polychlorinated biphenyls and 3-chlorobenzoic acid. Biologia 69, 428–434 (2014). https://doi.org/10.2478/s11756-014-0337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0337-0

Key words

Navigation