Skip to main content

Meiofauna constitute a considerable portion of invertebrate drift among moss-rich patches within a karst hydrosystem

Abstract

Aiming to establish the most frequent invertebrate taxa in drift at the small spatial scale within a moss-rich karst tufa-precipitating hydrosystem, we sampled drift among microhabitats differing in substratum type and flow conditions along a tufa barrier-cascading lotic reach. Additionally, we addressed the question of the contribution and the potential significance of meiofauna within the overall invertebrate drift at the small spatial scale. During the study period, a total of 60 invertebrate taxa were recorded in the drift. Six of these taxa belonged to the annelid/arthropod meiofauna and they represented 35% of total drift density. Macroinvertebrates found in drift were represented mainly by larval insects. The composition of the most abundant taxa in total drift was as follows: Alona spp. (Cladocera 26.7%), Riolus spp. (Coleoptera: Elmidae 13.2%), Simulium spp. (Diptera: Simuliidae 12.2%), Enchytraeidae (Oligochaeta 10.4%), Hydrachnidia (6.3%), Orthocladinae (Diptera: Chironomidae 3.9%) and Naididae (Oligochaeta 3.6%). Faunal drift densities and amounts of transported particulate matter (PM) were highest at the fast-flowing sites located at the barriers and lowest at the slow-flowing sites within pools. Similarly to the seasonal amounts of transported PM, faunal drift was lowest in winter, and peaked in autumn and in late spring/early summer. Correlation between flow velocity and PM-faunal drift densities suggested a significant effect of the dislodged PM, though a minor influence of discharge and flow velocity on faunal drift. We suggest that the small-scale habitat heterogeneity and the respective feeding and refugial strategies of the fauna, as well as faunal passive dislodgement initiated by the shear forces of the flow were the most important drivers of observed drift patterns.

This is a preview of subscription content, access via your institution.

References

  1. Amoros C. 1984. Introduction pratique à la systématique des organismes des eaux continentales françaises. 5. Crustacés cladocères. Bull. Mens. Soc. Linn. Lyon 53(3–4): 72–143.

    Google Scholar 

  2. Angradi T.R. 1991. Transport of coarse particulate organic matter in an Idaho river, USA. Hydrobiologia 211(3): 171–183. DOI: 10.1007/BF00008533

    Google Scholar 

  3. APHA 1985. Standard Methods for the Examination of Water and Wastewater. 16th edn. American Public Health Association, Washington, 1268 pp. ISBN: 0875531318, 97808755313 11

    Google Scholar 

  4. Armitage P.D. 1968. Some notes on the food of the chironomid larvae of a shallow woodland lake in South Finland. Ann. Zool. Fenn. 5: 6–13.

    Google Scholar 

  5. Armitage P.D., Cranston P.S. & Pinder L.C.V. 1995. The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman&Hall, London, 572 pp. ISBN: 041245260X, 978-0412452604

    Google Scholar 

  6. Barberá J.A. & Andreo B. 2011. Functioning of a karst aquifer from S Spain under highly variable climate conditions, deduced from hydrochemical records. Environ. Earth Sci. 65(8): 2337–2349. DOI: 10.1007/s12665-011-1382-4

    Google Scholar 

  7. Bass J. 1998. Last-instar larvae and pupae of the Simuliidae of Britain and Ireland: a key with brief ecological notes. Freshwater Biol. Assoc. Sci. Publ. 55: 1–102. ISBN: 9780900386589

    Google Scholar 

  8. Bauernfeind E. & Humpesch U.H. 2001. Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ö kologie. Verlag des Naturhistorischen Museums, Wien, 239 pp. ISBN: 3900275866

    Google Scholar 

  9. Berg M.B. 1995. Larval food and feeding behaviour, Chapter 7, pp. 136–168. In: Armitage P.D., Cranston P.S. & Pinder L.C.V. (eds), The Chironomidae: Biology and Ecology of Non-biting Midges, Chapman & Hall, New York, 572 pp. ISBN: 041245260X, 9780412452604

    Google Scholar 

  10. Bogut I., Vidaković J., Palijan G. & Čerba D. 2007. Benthic macroinvertebrates associated with four species of macrophytes. Biologia 62(5): 600–606. DOI: 10.2478/s11756-007-0118-0

    Google Scholar 

  11. Bond N.R. & Downes B.J. 2003. The independent and interactive effects of fine sediment and flow on benthic invertebrate communities characteristic of small upland streams. Freshwater Biol. 48(3): 455–465. DOI: 10.1046/j.1365-2427.2003.01016.x

    Google Scholar 

  12. Bott T.L. & Borchardt M.A. 1999. Grazing of protozoa, bacteria and diatoms by meiofauna in lotic ephibenthic communities. J. N. Am. Benthol. Soc. 18(4): 499–513.

    Google Scholar 

  13. Bottazzi E., Bruno M.C., Pieri V., Sabatino A., Silveri L., Carolli M. & Rossetti G. 2011. Spatial and seasonal distribution of invertebrates in Northern Apenninic rheocrene springs. In: Cantonati M., Gerecke R., Jüttner I. & Cox E.J. (eds), Springs: Neglected Key Habitats for Biodiversity Conservation, J. Limnol. 70(Suppl. 1): 77–92. DOI: 10.4081/jlimnol. 2011.s1.77

    Google Scholar 

  14. Bowden W.B., Glime J.M. & Riis T. 2007. Macrophytes and bryophytes, Chapter 18, pp. 381–414. In: Hauer F.R. & Lamberti G.A. (eds), Methods in Stream Ecology, 2nd edn, Academic Press/Elsevier, New York, 877 pp. ISBN: 978-0-12-332908-0

    Google Scholar 

  15. Brittain J.E. & Eikeland T.J. 1988. Invertebrate drift — a review. Hydrobiologia 166(1): 77–93. DOI: 10.1007/BF00017485

    Google Scholar 

  16. Brodersen K.P., Odgaard B.V., Vestergaard O. & Anderson N.J. 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Sřbygaard, Denmark: chironomid-macrophyte co-occurrence. Freshwater Biol. 46(2): 253–267. DOI: 10.1046/j.1365-2427.2001.00652.x

    Google Scholar 

  17. Bruno M.C., Maiolini B., Carolli M. & Silveri L. 2009. Impact of hydropeaking on hyporheic invertebrates ina n Alpine stream (Trentino, Italy). Ann. Limnol. — Int. J. Limnol. 45(3): 157–170. DOI: 10.1051/limn/2009018

    Google Scholar 

  18. Cellot B. 1989. Macroinvertebrate movements in a large European river. Freshwater Biol. 22(1): 45–55. DOI: 10.1111/j.1365-2427.1989.tb01082.x

    Google Scholar 

  19. Chambers P.A., Prepas E.E., Hamilton H.R. & Bothwell M.L. 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Appl. 1: 249–257. DOI: 10.2307/1941754

    Google Scholar 

  20. Chen J.A., Zhang D.D., Wang S.J., Xiao T.F. & Huang R.G. 2004. Factors controlling tufa deposition in natural waters at waterfall sites. Sediment. Geol. 166(3–4): 353–366. DOI: 10.1016/j.sedgeo.2004.02.003

    CAS  Google Scholar 

  21. Chengalath R. 1982. A faunistic and ecological survey of the littoral Cladocera of Canada. Can. J. Zool. 60(11): 2668–2682. DOI: 10.1139/z82-343

    Google Scholar 

  22. Cheruvelil K.S., Soranno P.A., Madsen J.D. & Robertson M.J. 2002. Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. J. N. Am. Benthol. Soc. 21(2): 261–277.

    Google Scholar 

  23. Cordova J.M., Rosi-Marshall E.J., Tank J.L. & Lamberti G.A. 2008. Coarse particulate organic matter transport in low-gradient streams of the Upper Peninsula of Michigan. J. N. Am. Benthol. Soc. 27(3): 760–771. DOI: 10.1899/06-119.1

    Google Scholar 

  24. Cummins K.W. 1975. Macroinvertebrates, Chapter 8, pp. 170–198. In: Whitton B.A. (ed.), River Ecology, Studies in Ecology 2, Blackwell, London, 725 pp. ISBN: 0520030168, 9780520030169

    Google Scholar 

  25. Cushing C.E., Minshall G.W. & Newbold J.D. 1993. Transport dynamics of fine particulate organic matter in two Idaho streams. Limnol. Oceanogr. 38(6): 1101–1115. DOI: 10.4319/lo.1993.38.6.1101

    CAS  Google Scholar 

  26. Deutsches Institut für Normung 1986. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, 16th edn. Vol II. Verlag Chemie, Weinheim.

    Google Scholar 

  27. Di Sabatino A., Gerecke R. & Martin P. 2000. The biology and ecology of lotic water mites (Hydrachnidia). Freshwater Biol. 44(1): 47–62. DOI: 10.1046/j.1365-2427.2000.00591.x

    Google Scholar 

  28. Dole-Olivier M.-J., Galassi D.M.P., Marmonier P. & Creuzé Des Châtelliers M. 2000. The biology and ecology of lotic microcrustaceans. Freshwater Biol. 44(1): 63–91. DOI: 10.1046/j.1365-2427.2000.00590.x

    Google Scholar 

  29. Elliott J.M. 1969. Diel periodicity in invertebrate drift and the effect of different sampling periods. Oikos 20(2): 524–528.

    Google Scholar 

  30. Elliott J.M. & Tullett P.A. 1977. The downstream drifting of larvae of Dixa (Diptera: Dixidae) in two stony streams. Freshwater Biol. 7(4): 403–407. DOI: 10.1111/j.1365-2427.1977.tb01688.x

    Google Scholar 

  31. Evans M. 1984. Benthic and epibenthic (microcrustaceans, macrobenthos) community structure in the vicinity of a power plant, Southeastern Michigan. Verh. Int. Ver. Limnol. 22: 488–494.

    Google Scholar 

  32. Faulkner H. & Copp G.H. 2001. A model for accurate drift estimation in streams. Freshwater Biol. 46(6): 723–733. DOI: 10.1046/j.1365-2427.2001.00707.x

    Google Scholar 

  33. Ford D.C. & Williams P.W. 2007. Karst Hydrogeology and Geomorphology. John Wiley and Sons, Ltd., Chichester, 562 pp. ISBN: 978-0-470-84996-5

    Google Scholar 

  34. Ford T.D. & Pedley H.M. 1996. A review of tufa and travertine deposits of the world. Earth-Sci. Rev. 41(3-4): 117–175. DOI: 10.1016/S0012-8252(96)00030-X

    CAS  Google Scholar 

  35. Frey D.G. 1986. The non-cosmopolitanism of chydorid Cladocera: implications for biogeography and evolution, pp. 237–256. In: Gore R.H. & Heck K.L. (eds), Crustacean Biogeography (Crustacean Issues 4), Balkema, Rotterdam, 292 pp. ISBN: 90-6191-593-7

    Google Scholar 

  36. Frissell C.A., Liss W.J., Warren C.E. & Hurley M.D. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ. Manage. 10(2): 199–214. DOI: 10.1007/BF01867358

    Google Scholar 

  37. Galassi D., Marmonier P., Dole-Olivier M.-J. & Rundle S. 2002. Microcrustacea (Ostracoda, Copepoda, Cladocera), Part I. Chapter 6, pp. 135–175. In: Rundle S.D., Robertson A.L. & Schmid-Araya J.M. (eds), Freshwater Meiofauna: Biology and Ecology, Backhuys Publishers, Leiden, 369 pp. ISBN: 9057821095

    Google Scholar 

  38. Geraldes A.M. & Boavida M.J. 2004. Do littoral macrophytes influence crustacean zooplantkot distribution? Limnetica 23(1-2): 57–64.

    Google Scholar 

  39. Giere O. 2009. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments. 2nd ed. Springer-Verlag, Berlin, 527 pp. ISBN: 978-3-540-68661-3

    Google Scholar 

  40. Giller P.S. & Malmquist B. 1998. The Biology of Streams and Rivers. Oxford University Press, Oxford, 304 pp. ISBN: 978-0-19-854977-2

    Google Scholar 

  41. Goulden C.E. 1971. Environmental control of the abundance and distribution of the chydorid Cladocera. Limnol. Oceanogr. 16(2): 320–331. DOI: 10.4319/lo.1971.16.2.0320

    Google Scholar 

  42. Grzybkowska M., Dukowska M., Figiel K., Szczerkowska E. & Tszydel M. 2004. Dynamics of macroinvertebrate drift in a lowland river. Zool. Pol. 49(1–4): 111–127.

    Google Scholar 

  43. Grzybkowska M., Szczerkowska E., Tszydel M., Dukowska M., Kucharski L. & Rosiak P. 2006. Macroinvertebrate drift in a lowland river during its recovery to the natural discharge. Acta Agrophysica 7(2): 343–354.

    Google Scholar 

  44. Habdija I., Meštrović M., Matoničkin R., Primc-Habdija B. & Cindrić Z. 2000. Current velocity and retention degree of detritus in moss mats as factors affecting the distribution of macroinvertebrates on the travertine barriers in karstic waters, pp. 245–250. In: Horvatić J. (ed), Limnol. Rep. 33, Proceedings of the 33th Conference IAD, Osijek, Josip Juraj Strossmayer University, Faculty of Education, Croatian Ecological Society, 545 pp. ISBN: 953-6711-11-7

    Google Scholar 

  45. Habdija I., Primc-Habdija B. & Belinić I. 1994. Functional community organization of macroinvertebrates in lotic habitats of the Plitvice Lakes. Acta Hydrochim. Hydrobiol. 22(2): 85–92. DOI: 10.1002/aheh.19940220206

    Google Scholar 

  46. Habdija I., Primc-Habdija B., Matoničkin R., Kučinić M., Radanović I., Miliša M. & Mihaljević Z. 2004. Current velocity and food supply as factors affecting the composition of macroinvertebrates in bryophyte habitats in karst running water. Biologia 59(5): 577–593.

    Google Scholar 

  47. Habdija I., Radanović I., Primc-Habdija B. & Špoljar M. 2002. Vegetation cover and substratum type as factors influencing the spatial distribution of trichopterans along a karstic river. Int. Rev. Hydrobiol. 87(4): 423–437. DOI: 10.1002/1522-2632(200207)87:4〈423::AID-IROH423〉3.0.CO;2-V

    Google Scholar 

  48. Hann B.J. 1995. Invertebrate associations with submersed aquatic plants in a praire wetland. UFS (Delta Marsh) Annual Report 30: 78–84.

    Google Scholar 

  49. Hansen E.A. & Closs G.P. 2007. Temporal consistency in the long-term spatial distribution of macroinvertebrate drift along a stream reach. Hydrobiologia 575(1): 361–371. DOI: 10.1007/s10750-006-0384-9

    Google Scholar 

  50. Harper R.M., Fry J.C. & Learner M.A. 1981. A bacteriological investigation to elucidate the feeding biology of Nais variabilis (Oligochaeta: Naididae). Freshwater Biol. 11(3): 227–236. DOI: 10.1111/j.1365-2427.1981.tb01256.x

    Google Scholar 

  51. Hart D.D. & Finelli C.M. 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annu. Rev. Ecol. Syst. 30: 363–395. DOI: 10.1146/annurev.ecolsys.30.1.363

    Google Scholar 

  52. Hauer F.R. & Resh V.H. 2007. Macroinvertebrates, pp. 435–463. In: Hauer F.R. & Lamberti G.A. (eds), Methods in Stream Ecology, 2nd edn, Academic Press/Elsevier, New York, 896 pp. ISBN-10: 0123329086, ISBN-13: 978-0123329080

    Google Scholar 

  53. Heino J. & Korsu K. 2008. Testing species-stone area and species bryophyte cover relationships in riverine macroinvertebrates at small scales. Freshwater Biol. 53(3): 558–568. DOI: 10.1111/j.1365-2427.2007.01920.x

    Google Scholar 

  54. Humphries S. 2002. Dispersal in drift-prone macroinvertebrates: a case for density-independence. Freshwater Biol. 47(5): 921–929. DOI: 10.1046/j.1365-2427.2002.00819.x

    Google Scholar 

  55. Jacobsen D. & Bojsen B. 2002. Macroinvertebrate drift in Amazon streams in relation to riparian forest cover and fish fauna. Arch. Hydrobiol. 155(2): 177–197.

    Google Scholar 

  56. Jeppesen E., Lauridsen T., Kairesalo T. & Perrow M.R. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes, pp. 91–114. In: Jeppesen E., Søndergaard M., Søndergaard M. & Christoffersen K. (eds), The Structuring Role of Submerged Macrophytes in Lakes, Ecological Studies 131, Springer, New York, 306 pp. ISBN: 978-1-4612-6871-0. DOI: 10.1007/978-1-4612-0695-8 5

    Google Scholar 

  57. Jersabek C.D., Brancelj A., Stoch F. & Schabetsberger R. 2001. Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia 453/454: 309–324. DOI: 10.1007/0-306-47537-5 25

    Google Scholar 

  58. Knoz J. 1965. To identification of Czechoslovakian black-flies (Diptera, Simuliidae). Folia Fac. Sci. Nat. Univ. Purkyn. Brun. 6: 1–52.

    Google Scholar 

  59. Kowarc K.V. 1992. Depth distribution and mobility of a harpacticoid copepod with the bed sediment o fan alpine brook. Regul. River. 7(1): 57–63. DOI: 10.1002/rrr.3450070108

    Google Scholar 

  60. Lancaster J. 1999. Small-scale movements of lotic macroinvertebrates with variations in flow. Freshwater Biol. 41(3): 605–619. DOI: 10.1046/j.1365-2427.1999.00410.x

    Google Scholar 

  61. Legrand H.E. & Stringfield V.T. 1973. Karst hydrology — a review. J. Hydrol. 20(2): 97–120. DOI: 10.1016/0022-1694(73)90034-6

    Google Scholar 

  62. Lencioni V., Maiolini B., Zuccati S. & Corradini F. 2002. Zoobenthos drift in two high mountain stream in the de la Mare glacial system (Stelvio National Park, Trentino, Italy). Stud. Trentini Sci. Nat. Acta Biol. 78: 49–57.

    Google Scholar 

  63. Linhart J., VlčkovŠ. & Uvíra V. 2002. Bryophytes as a special mesohabitat for meiofauna in a rip-rapped channel. River Res. Appl. 18(4): 321–330. DOI: 10.1002/rra.671

    Google Scholar 

  64. Maciolek J.A. 1966. Abundance and character of microseston in a California mountain stream. Verh. Int. Ver. Limnol. 16: 639–645.

    Google Scholar 

  65. Mackay R.J. 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Can. J. Fish. Aquat. Sci. 49(3): 617–628. DOI: 10.1139/f92-071

    Google Scholar 

  66. Margaritora F.G. 1983. Cladoceri (Crustacea: Cladocera). Guide per il Riconoscimento delle Specie Animali delle Acque Interne Italiane. 22. Stamperia Valdonega, Verona, 168 pp.

    Google Scholar 

  67. Mastrantuono L. 1993. Zoobenthos associated with submerged macrophytes and evaluation of trophic status in lakes. Verh. Int. Ver. Limnol. 25(2): 780–783.

    Google Scholar 

  68. Matoničkin Kepčija R., Habdija I., Primc-Habdija B. & Miliša M. 2006. Simuliid silk pads enhance tufa deposition. Arch. Hydrobiol. 166(3): 387–409. DOI: 10.1127/0003-9136/2006/0166-0387

    Google Scholar 

  69. Miliša M., Habdija I., Primc-Habdija B., Radanović I. & Matoničkin Kepčija R. 2006. The role of flow velocity in the vertical distribution of particulate organic matter on mosscovered travertine barriers of the Plitvice Lakes (Croatia). Hydrobiologia 553(1): 231–243. DOI: 10.1007/s10750-005-1220-3

    Google Scholar 

  70. Minshall G.W. 1988. Stream ecosystem theory: a global perspective. J. N. Am. Benthol. Soc. 7(4): 263–288.

    Google Scholar 

  71. Molla S., Robles S. & Casado C. 2006. Seasonal variability of particulate organic matter in a mountain stream in central Spain. Int. Rev. Hydrobiol. 91(5): 406–422. DOI: 10.1002/iroh.200510857

    Google Scholar 

  72. Mori N. & Brancelj A. 2011. Invertebrate drift during in-stream gravel extraction in the River Bača, Slovenia. Fund. Appl. Limnol. 178(2): 121–130. DOI: 10.1127/1863-9135/2011/0178-0121

    Google Scholar 

  73. Müller K. 1973. Life cycles of stream insects. Aquilo Ser. Zool. 14: 105–112.

    Google Scholar 

  74. Müller K. 1974. Stream drift as a chronobiological phenomenon in running water ecosystems. Annu. Rev. Ecol. Syst. 5: 309–323. DOI: 10.1146/annurev.es.05.110174.001521

    Google Scholar 

  75. Naiman R.J. & Sedell J.R. 1979. Characterization of particulate organic matter transported by some Cascade Mountain streams. J. Fish. Res. Bd. Can. 36(1): 17–31. DOI: 10.1139/f79-003

    CAS  Google Scholar 

  76. Neiff A.P. & Caringnan R. 1997. Macroinvertebrates on Eichhornia crassipes in two lakes oft he Paraná River floodplain. Hydrobiologia 345(2-3): 185–196. DOI: 10.1023/A:1002949528887

    Google Scholar 

  77. Nilsson A. 1996. Aquatic Insects of North Europe 1. Ephemeroptera, Plecoptera, Heteroptera, Neuroptera, Megaloptera, Coleoptera, Trichoptera, Lepidoptera. Apollo Books, Stenstrup, 274 pp. ISBN: 8788757099, 9788788757095

    Google Scholar 

  78. Nilsson A. 1997. Aquatic Insects of North Europe 2. Odonata, Diptera. Apollo Books, Stenstrup, 440 pp. ISBN: 8788757072, 9788788757071

    Google Scholar 

  79. O’Neill R.V. 1976. Ecosystem persistence and heterotrophic regulation. Ecology 57(6): 1244–1253.

    Google Scholar 

  80. Palmer M.A. 1992. Incorporating lotic meiofauna into our understanding of faunal transport processes. Limnol. Oceanogr. 37(2): 329–341.

    Google Scholar 

  81. Palmer M.A., Bely A.E. & Berg K.E. 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89(2): 182–194. DOI: 10.1007/BF00317-217

    Google Scholar 

  82. Palmer M.A. & Poff N.L. 1997. Heterogeneity in streams: the influence of environmental heterogeneity on patterns and processes in streams. J. N. Am. Benthol. Soc. 16(1): 169–173.

    Google Scholar 

  83. Palmer M.A., Strayer D.L. & Rundle S.D. 2007. Meiofauna, Section C, Chapter 19, pp. 415–433. In: Hauer F.R. & Lamberti G.A. (eds), Methods in Stream Ecology, 2nd edn, Academic Press/Elsevier, New York. ISBN-10: 0123329086, ISBN-13: 978-0123329080

    Google Scholar 

  84. Peckarsky B.L. 1980. Predator-prey interactions between stone-flies and mayflies: behavioural observations. Ecology 61(4): 932–943.

    Google Scholar 

  85. Pentecost A. 2005. Travertine. Springer-Verlag, Berlin and Heidelberg, 445 pp. ISBN: 978-1-4020-3606-4

    Google Scholar 

  86. Phillips E.C. 2008. Invertebrate colonization of native and invasive aquatic macrophytes in Presque Isle Bay, Lake Erie. J. Freshwater Ecol. 23(3): 451–457. DOI: 10.1080/02705060.2008.9664223

    Google Scholar 

  87. Pringle C.M., Naiman R.J., Bretschko G., Karr J.R., Oswood M.W., Webster J.R., Welcomme R.L. & Winterbourn M.J. 1988. Patch Dynamics in Lotic Systems: The Stream as a Mosaic. J. N. Am. Benthol. Soc. 7(4): 503–524.

    Google Scholar 

  88. Rader R.B. & McArthur J.V. 1995. The relative importance of refugia in determining the drift and habitat selection of predaceous stoneflies in a sandy-bottomed stream. Oecologia 103(1): 1–9. DOI: 10.1007/BF00328418

    Google Scholar 

  89. Ramirez A. & Pringle C.M. 1999. Invertebrate drift and benthic community dynamics in a lowland neotropical stream, Costa Rica. Hydrobiologia 386(1–3): 19–26. DOI: 10.1023/A:1003409927131

    Google Scholar 

  90. Ramirez A. & Pringle C.M. 2001. Spatial and temporal patterns of invertebrate drift in streams draining a Neotropical landscape. Freshwater Biol. 46(1): 47–62. DOI: 10.1111/j.1365-2427.2001.00636.x

    Google Scholar 

  91. Richardson D.C., Kaplan L.A., Newbold J.D. & Aufdenkampe A.K. 2009. Temporal dynamics of seston: a recurring nighttime peak and seasonal shifts in composition in a stream ecosystem. Limnol. Oceanogr. 54(1): 344–354.

    CAS  Google Scholar 

  92. Robertson A.L. 2000. Lotic meiofaunal community dynamics: colonisation, resilience and persistence in a spatially and temporally heterogeneous environment. Freshwater Biol. 44(1): 135–147. DOI: 10.1046/j.1365-2761.2000.00595.x

    Google Scholar 

  93. Robertson A.L. 2002. Changing times: the temporal dynamics of freshwater benthic microcrustacea, pp. 261–278. In: Rundle S.D., Robertson A. & Schmid-Araya J.M. (eds), Freshwater Meiofauna: Biology and Ecology, Backhuys Publishers, Leiden, 369 pp. ISBN: 9057821095, 9789057821097

    Google Scholar 

  94. Robertson A.L., Rundle S.D. & Schmid-Araya J.M. 2000. Putting the meio-into stream ecology: current findings and future directions for lotic meiofaunal research. Freshwater Biol. 44(1): 177–183. DOI: 10.1046/j.1365-2427.2000.00592.x

    Google Scholar 

  95. Robinson C.T., Aebischer S. & Uehlinger U. 2004. Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods. J. N. Am. Benthol. Soc. 23(4): 853–867. DOI: 10.1899/0887-3593(2004)023〈0853:IAHROM〉2.0.CO;2

    Google Scholar 

  96. Robinson C.T., Tockner K. & Burgherr P. 2002. Seasonal patterns in macroinvertebrate drift and seston transport in streams of an alpine glacial flood plain. Freshwater Biol. 47(5): 985–994. DOI: 10.1046/j.1365-2427.2002.00835.x

    Google Scholar 

  97. Rosenberg D.M. & Resh V.H. 1993. Introduction to freshwater biomonitoring and benthic macroinvertebrates, pp. 1–9. In: Rosenberg D.M. & Resh V.H. (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates, Chapman and Hall, New York, 488 pp. ISBN: 0-412-02251-6

    Google Scholar 

  98. Sakuma M., Hanazato T., Saji A. & Nakazato R. 2004. Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona (Chydoridae, Anomopoda) on lake vegetation. Limnology 5(1): 17–23. DOI: 10.1007/s10201-003-0110-5

    Google Scholar 

  99. Saltveit S.J., Haug I. & Brittain J.E. 2001. Invertebrate drift in a glacial river and its non-glacial tributary. Freshwater Biol. 46(12): 1777–1789. DOI: 10.1046/j.1365-2427.2001.00858.x

    Google Scholar 

  100. Sandlund O.T. 1982. The drift of zooplankton and microzoobenthos in the river Strandaelva, western Norway. Hydrobiologia 94(1): 33–48. DOI: 10.1007/BF00008632

    Google Scholar 

  101. Schmedtje U. & Kohmann F. 1988. Bestimmungsschlüssel für die Saprobier-DIN-Arten (Makroorganismen). Informationsberichte des Bayerisches Landesamt für Wasserwirtschaft, München, 2/22.

    Google Scholar 

  102. Schram M.D., Brown A.V. & Jackson D.C. 1990. Diel and seasonal drift of zooplankton in a headwater stream. American Midland Naturalist 123(1): 135–143.

    Google Scholar 

  103. Schroeder F., Traunspurger W., Pettersson K. & Peters L. 2012. Temporal changes in periphytic meiofauna in lakes of different trophic states. J. Limnol. 71(1): 216–227. DOI: 10.4081/jlimnol.2012.e23

    Google Scholar 

  104. Sertić Perić M., Miliša M., Matoničkin Kepčija R., Primc-Habdija B. & Habdija I. 2011. Seasonal and fine-scale spatial drift patterns in a tufa-depositing barrage hydrosystem. Fund. Appl. Limnol./Arch. Hydrobiol. 178(2): 131–145. DOI: 10.1127/1863-9135/2011/0178-0131

    Google Scholar 

  105. Shearer K.A., Stark D.J., Hayes W.J. & Young G.R. 2003. Relationships between drifting and benthic invertebrates in three New Zealand rivers: implications for drift feeding fish. N. Z. J. Mar. Freshwater Res. 37(4): 809–820. DOI: 10.1080/00288330.2003.9517210

    Google Scholar 

  106. Small M.J., Doyle M.W., Fuller R.L. & Manners R.B. 2008. Hydrologic versus geomorphic limitation on CPOM storage in stream ecosystems. Freshwater Biol. 53(8): 1618–1631. DOI: 10.1111/j.1365-2427.2008.01999.x

    Google Scholar 

  107. Smock L.A. 2007. Macroinvertebrate dispersal, Section C. Chapter 21, pp. 465–487. In: Hauer F.R. & Lamberti G.A. (eds), Methods in Stream Ecology, 2nd edn, Academic Press/Elsevier, New York, 896 pp. ISBN-10: 0123329086, ISBN-13: 978-0123329080

    Google Scholar 

  108. Soszka H. 1974. Chironomidae associated with pond-weeds (Potamogeton lucens and Potamogeton perfoliatus L.) in the Mikolajskie Lake. Bull. Pol. Acad. Sci.: Biol. 22: 369–375.

    Google Scholar 

  109. Srdoč D., Horvatinčić N., Obelić B., Krajcar I. & Sliepčević A. 1985. Procesi taloŽenja kalcita u krškim vodama s posebnim osvrtom na Plitvička jezera [Calcite deposition processes in karst waters with special emphasis on the Plitvice Lakes, Yugoslavia] (in Croatian). Krs 11(4-6): 101–204. ISSN: 0454-5478

    Google Scholar 

  110. StatSoft, Inc. 2007. Statistica (data analysis software system), Version 8.0. www.statsoft.com

    Google Scholar 

  111. Sundermann A. & Lohse S. 2004. Bestimmungsschlüssel für die aquatischen Zweiflügler (Diptera) in Anlehnung an die Operationelle Taxaliste für Fließgewässer in Deutschland. In: Haase P. & Sundermann A. (eds), Standardisierung der Erfassungs- und Auswertungsmethoden von Makrozoobenthosuntersuchungen in Fließgewässern. Abschlussbericht zum LAWA-Projekt O 4.02. http://www.fliessgewaesserbewertung.de (Accessed 10.09.2013)

    Google Scholar 

  112. Suren A.M. 1991. Bryophytes as invertebrate habitat in two New Zealand alpine streams. Freshwater Biol. 26(3): 399–418. DOI: 10.1111/j.1365-2427.1991.tb01407.x

    Google Scholar 

  113. Suren A.M. 1992a. Enhancement of invertebrate food resources by bryophytes in New Zealand alpine headwater streams. N. Z. J. Mar. Freshwater Res. 26(2): 229–239. DOI: 10.1080/00288330.1992.9516518

    Google Scholar 

  114. Suren A.M. 1992b. Meiofaunal communities associated with bryophytes and gravels in shaded and unshaded alpine streams in New Zealand. N. Z. J. Mar. Freshwater Res. 26(1): 115–125. DOI: 10.1080/00288330.1992.9516507

    Google Scholar 

  115. Suren A.M. 1993. Bryophytes and associated invertebrates in first-order alpine streams of Arthur’s Pass, New Zealand. N. Z. J. Mar. Freshwater Res. 27(4): 479–494. DOI: 10.1080/00288330.1993.9516589

    Google Scholar 

  116. Swan C.M. & Palmer M.A. 2000. What drives small-scale spatial patterns in lotic meiofauna communities? Freshwater Biol. 44(1): 109–121. DOI: 10.1046/j.1365-2427.2000.00587.x

    Google Scholar 

  117. Sychra J., Adamek Z. & Petrivalska K. 2010. Distribution and diversity of littoral macroinvertebrates within extensive reed beds of a lowland pond. Ann. Limnol. — Int. J. Limnol. 46: 281–289. DOI: 10.1051/limn/2010026

    Google Scholar 

  118. Špoljar M., Fressl J., DraŽina T., Meseljević M.& Grčić Z. 2012a. Epiphytic metazoans on emergent macrophytes in oxbow lakes of the Krapina River, Croatia: differences related to plant species and limnological conditions. Acta Bot. Croat. 71(1): 125–138. DOI: 10.2478/v10184-011-0062-5

    Google Scholar 

  119. Špoljar M., Habdija I. & Primc-Habdija B. 2007. The influence of the lotic and lentic stretches on the zooseston flux through the Plitvice Lakes (Croatia). Ann. Limnol. — Int. J. Limnol. 43: 29–40. DOI: 10.1051/limn/2007025

    Google Scholar 

  120. Špoljar M., Šneller D., Miliša M., Lajtner J., Sertić Perić M. & Radanović I. 2012b. Entomofauna of submerged macrophyte stands in reservoirs (Park prirode Papuk). Entomol. Croat. 16(1-4): 7–20.

    Google Scholar 

  121. Tachét H., Richoux P., Bournaud M. & Usseglio-Polatera P. 2000. Invertébrés d’Eau Douce. Systématique, Biologie, écologie. CNRS éditions, Paris, 588 pp. ISBN: 2271057450

    Google Scholar 

  122. Townsend C.R. & Hildrew A.G. 1976. Field experiments on the drifting, colonization and continuous redistribution of stream benthos. J. Anim. Ecol. 45(3): 759–772.

    Google Scholar 

  123. Tremel B., Frey S.E., Yan N.D., Somers K.M. & Pawson T.W. 2000. Habitat specificity of littoral Chydoridae (Crustacea, Branchiopoda, Anomopoda) in Plastic Lake, Ontario, Canada. Hydrobiologia 432(1–3): 195–205. DOI: 10.1023/A:1004023003179

    Google Scholar 

  124. Uehlinger U. & Naegeli M.W. 1998. Ecosystem metabolism, disturbance, and stability in a prealpine gravel bed river. J. N. Am. Benthol. Soc. 17(2): 165–178.

    Google Scholar 

  125. Vallenduuk H.J. & Moller Pillot H.K.M. 2007. Chironomidae Larvae. Vol. I: General Ecology and Tanypodinae. KNNV Publishing, Zeist, 276 pp. ISBN: 978-90-5011-259-8.

    Google Scholar 

  126. Vanoni V.A. 2006. Sedimentation Engineering: Theory, Measurements, Modeling, and Practice (Manuals and Reports on Engineering Practice No. 54) (Asce Manual and Reports on Engineering Practice), 2nd edn. American Society of Civil Engineers, Reston, 424 pp. ISBN-10: 0784408238, ISBN-13: 978-0784408230

    Google Scholar 

  127. VlčkovŠ., Linhart J. & Uvíra V. 2002. Permanent and temporary meiofauna of an aquatic moss Fontinalis antipyretica Hedw. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat. Biol. 39–40: 131–140.

    Google Scholar 

  128. Vogel S. 1981. Life in Moving Fluids. Princeton University Press, Princeton, New Jersey, 352 pp. ISBN-10: 0871507498, ISBN-13: 9780871507495

    Google Scholar 

  129. Wallace J.B. & Webster J.R. 1996. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41: 115–139. DOI: 10.1146/annurev.en.41.010196.000555

    CAS  PubMed  Google Scholar 

  130. Waringer J. & Graf W. 1997. Atlas der Österreichischen Köcherfliegenlarven. Facultas Universitätsverlag, Wien, 286 pp. ISBN-10: 3850764117, ISBN-13: 978-3850764117

    Google Scholar 

  131. Waringer J.A. 1992. The drifting of invertebrates and particulate organic matter in an Austrian mountain brook. Freshwater Biol. 27(3): 367–378. DOI: 10.1111/j.1365-2427.1992.tb00546.x

    Google Scholar 

  132. Waters T.F. 1972. The drift of stream insects. Annu. Rev. Entomol. 17: 253–272. DOI: 10.1146/annurev.en.17.010172.001345

    Google Scholar 

  133. White W.B. 1988. Geomorphology and Hydrology of Karst Terrains. Oxford University Press, New York, 464 pp. ISBN: 978-0-19-504444-7

    Google Scholar 

  134. Wilcox A.C., Peckarsky B.L., Taylor B.W. & Encalada A.C. 2008. Hydraulic and geomorphic effects on mayfly drift in high-gradient streams at moderate discharges. Ecohydrology 1(2): 176–186. DOI: 10.1002/eco.16

    Google Scholar 

  135. Williams C.J. 1989. Downstream drift of the larvae of Chironomidae (Diptera) in the River Chew, S. W. England. Hydrobiologia 183(1): 59–72. DOI: 10.1007/BF00005971

    Google Scholar 

  136. Williams D.D. 1980. Temporal patterns in recolonization of stream benthos. Arch. Hydrobiol. 90(1): 56–74.

    Google Scholar 

  137. Winemiller K.O., Flecker A.S. & Hoeinghaus D.J. 2010. Patch dynamics and environmental heterogeneity in lotic ecosystems. J. N. Am. Benthol. Soc. 29(1): 84–99. DOI: 10.1899/08-048.1

    Google Scholar 

  138. World Bank 2008. Biodiversity, Climate Change and Adaptation — Nature-based Solutions From the World Bank Portfolio. The World Bank, Washington.

    Google Scholar 

  139. Yarnell S.M., Mount J.F. & Larsen E.W. 2006. The influence of relative sediment supply on riverine habitat heterogeneity. Geomorphology 80(3–4): 310–324. DOI: 10.1016/j.geomorph.2006.03.005

    Google Scholar 

  140. Zhang D.D., Zhang Y.J., Zhu A. & Cheng X. 2001. Physical mechanisms of river waterfall tufa (travertine) formation. J. Sediment. Res. 71(1): 205–216. DOI: 10.1306/061600710205

    CAS  Google Scholar 

  141. Zhang Z., Chen X., Ghadouani A. & Shi P. 2011. Modelling hydrological processes influenced by soil, rock and vegetetion in a small karst basin of southwest China. Hydrol. Process. 25(15): 2456–2470. DOI: 10.1002/hyp.8022

    Google Scholar 

  142. Zwick P. 2004. Key to the West Palaearctic genera of stoneflies (Plecoptera) in the larval stage. Limnologica 34(4): 315–348. DOI: 10.1016/S0075-9511(04)80004-5

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mirela Sertić Perić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perić, M.S., Dražina, T., Špoljar, M. et al. Meiofauna constitute a considerable portion of invertebrate drift among moss-rich patches within a karst hydrosystem. Biologia 69, 363–380 (2014). https://doi.org/10.2478/s11756-013-0323-y

Download citation

Key words

  • words drift
  • macroinvertebrates
  • meiofauna
  • habitat patchiness
  • Plitvice Lakes
  • flow velocity