Identification and characterization of a highly alkaline and thermotolerant novel xylanase from Streptomyces sp.

Abstract

Xylanases constitute an important industrial enzyme, which hydrolyzes the polysaccharide xylan. In this work, a novel Streptomyces strain producing cellulase-free xylanase was isolated from the soil samples collected from the mangrove forest of Kadalundi, Kerala, India. The strain produced unique enzyme, which exhibited optimal activity at pH 9.0 and tolerance up to pH 12.0. Media engineering was carried out to improve the enzyme production, which showed best enzyme production at 30°C, medium pH 9.0 and incubation time of 48 h. Enzyme was highly thermo-tolerant up to 70°C and alkaline tolerant. Partial gene amplification as well as partial purification of enzyme was carried out to characterize the enzyme. The unique features of the enzyme make it an ideal candidate for industrial application for paper and pulp industry.

This is a preview of subscription content, log in to check access.

References

  1. Abdelwahed N.A.M., El-Naggar N.E. & Saber W.I.A. 2011. Factors and correlations controlling cellulase-free xylanase production by Streptomyces halstedii NRRL B-1238 in submerged culture. Aust. J. Basic Appl. Sci. 5: 45–53.

    CAS  Google Scholar 

  2. Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    PubMed  CAS  Google Scholar 

  3. Bailey M.J., Beily P.& Poutanen K. 1992. Interlaboratory testing and methods for assay of xylanase activity. J. Biotechnol. 23: 257–270.

    Article  CAS  Google Scholar 

  4. Beg Q.K., Bharat B., Mukesh K. & Hoondal G.S. 2000. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Technol. 27: 459–466.

    PubMed  Article  CAS  Google Scholar 

  5. Beg Q.K., Kapoor M., Mahajan L. & Hoondal G.S. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56: 326–338.

    PubMed  Article  CAS  Google Scholar 

  6. Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Res. 41(Database issue): D36–D42.

    PubMed  Article  CAS  Google Scholar 

  7. Collins T., Gerday C. & Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3–23.

    PubMed  Article  CAS  Google Scholar 

  8. Corpet F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16: 10881–10890.

    PubMed  Article  CAS  Google Scholar 

  9. Dhanasekaran D., Sivamani P., Arunagrinathan N., Paneerselvum A. & Thajuddin N. 2005. Screening and identification of antibiotic producing strains of marine Streptomyces. J. Microbial World 7: 62–66.

    Google Scholar 

  10. Dhiman S.S., Sharma J. & Battan B. 2008. Industrial applications and future prospects of microbial xylanases: a review. BioResources 3: 1377–1402.

    Google Scholar 

  11. Ghose T.K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257–268.

    Article  CAS  Google Scholar 

  12. Gupta B.N., Mishra S. & Basak U.C. 2007. Occurrence of Streptomyces aurantiacus in mangroves of Bhitarkanika. Malaysian J. Microbiol. 3: 7–14.

    Google Scholar 

  13. Johnson L.I. & Curl E.A. 1972. Methods for Research on Ecologyof Soil Born Pathogens. Burgess Pub. Co., Minneapolis, 247 pp.

    Google Scholar 

  14. Kumar A., Gupta P., Shrivastava B., Khosa Y.P. & Kuhad R.C. 2012. Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK 2010, its characterization and application in saccharification of second generation biomass. J. Mol. Catal. B Enzymatic 74: 170–177.

    Article  CAS  Google Scholar 

  15. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    PubMed  Article  CAS  Google Scholar 

  16. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    PubMed  Article  CAS  Google Scholar 

  17. Lescic I., Zehl M., Muller R., Vukelic B., Abramic M., Pigac J., Allmaier G. & Kojicprodic B. 2004. Structural characterization of extracellular lipase from Streptomyces rimosus: assignment of disulphide bridge pattern by mass spectrometry. Biol. Chem. 385: 1147–1156.

    PubMed  Article  CAS  Google Scholar 

  18. Maheswari M.U. & Chandra T.S. 2000. Production and potential applications of a xylanase from a new strain of Streptomyces cuspidosporus. World J. Microbiol. Biotechnol. 16: 257–263.

    Article  CAS  Google Scholar 

  19. Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  20. Ninawe S., Lal R. & Kuhad R.C. 2006. Isolation of three xylanase producing strains of actinomycetes and their identification using molecular methods. Curr. Microbiol. 53: 178–182.

    PubMed  Article  CAS  Google Scholar 

  21. Peixoto-Nogueira S., Michelin M., Betini J.H.A., Jorge J.A., Terenzi H.F. & Polizeli M.L.T.M. 2009. Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J. Ind. Microbiol. Biotechnol. 36: 149–155.

    Article  Google Scholar 

  22. Ratanakhanokchai K., Kyu K.L. & Tanticharoen M. 1999. Purification and properties of a xylan-binding endoxylanase from alkalophilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694–697.

    PubMed  CAS  Google Scholar 

  23. Saratale G.D., Sartale R.G. & Koh S.E. 2012. Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass Bioenergy 47: 302–315.

    Article  CAS  Google Scholar 

  24. Sharma P. & Bajaj B.K. 2006. Production and partial characterization of alkali tolerant xylanases from an alkalophilic Streptomyces sp. CD3. J. Sci. Ind. Res. 64: 688–697.

    Google Scholar 

  25. Singh R., Kapoor V. & Kumar V. 2012. Utilization of agroindustrial waste for the simultaneous production of amylase and xylanases by thermophilic actinomycetes. Braz. J. Microbiol. 43: 1545–1552.

    PubMed  Article  CAS  Google Scholar 

  26. Thomas L. Arumugam M. & Pandey A. 2013. Production, purification, characterization and over-expression of xylanases from actinomycetes. Ind. J. Expt. Biol.

    Google Scholar 

  27. Uyar F. & Baysal Z. 2004. Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochem. 39: 1893–1898.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ashok Pandey.

Additional information

Based on a contribution presented at the International Conference on Industrial Biotechnology (ICIB-2012), November 21–23, 2012, Punjabi University, Patiala (Pb.), India

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomas, L., Sindhu, R. & Pandey, A. Identification and characterization of a highly alkaline and thermotolerant novel xylanase from Streptomyces sp.. Biologia 68, 1022–1027 (2013). https://doi.org/10.2478/s11756-013-0248-5

Download citation

Key words

  • xylanase
  • Streptomyces sp.
  • alkaline tolerance
  • thermo-tolerance
  • paper and pulp industry