Skip to main content
Log in

Evolutionary transition from C3 to C4 photosynthesis and the route to C4 rice

  • Review
  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Compared with C3 plants, C4 plants possess a mechanism to concentrate CO2 around the ribulose-1,5-bisphosphate carboxylase/oxygenase in chloroplasts of bundle sheath cells so that the carboxylation reaction work at a much more efficient rate, thereby substantially eliminate the oxygenation reaction and the resulting photorespiration. It is observed that C4 photosynthesis is more efficient than C3 photosynthesis under conditions of low atmospheric CO2, heat, drought and salinity, suggesting that these factors are the important drivers to promote C4 evolution. Although C4 evolution took over 66 times independently, it is hypothesized that it shared the following evolutionary trajectory: 1) gene duplication followed by neofunctionalization; 2) anatomical and ultrastructral changes of leaf architecture to improve the hydraulic systems; 3) establishment of two-celled photorespiratory pump; 4) addition of transport system; 5) co-option of the duplicated genes into C4 pathway and adaptive changes of C4 enzymes. Based on our current understanding on C4 evolution, several strategies for engineering C4 rice have been proposed to increase both photosynthetic efficiency and yield significantly in order to avoid international food crisis in the future, especially in the developing countries. Here we summarize the latest progresses on the studies of C4 evolution and discuss the strategies to introduce two-celled C4 pathway into rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ache P., Bauer H., Kollist H., Al-Rasheid K.A.S., Lautner S., Hartung W. & Hedrich R. 2010. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Plant J. 62: 1072–1082.

    PubMed  CAS  Google Scholar 

  • Ali S. & Taylor W.C. 2001. Quantitative regulation of the Flaveria Me1 gene is controlled by the 3′-untranslated region and sequences near the amino terminus. Plant Mol. Biol. 46: 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Bauwe H. 2010. Photorespiration — the bridge to C4 photosynthesis, pp. 81–108. In: Raghavendra A.S & Sage R.F. (eds), C4 Photosynthesis and Related CO2 Concentrating Mechanisms, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Berry J.O., Breiding D.E. & Klessig D.F. 1990. Light-mediated control of translational initiation of ribulose-1,5-bisphosphate carboxylase in amaranth cotyledons. Plant Cell. 2: 795–803.

    PubMed  CAS  Google Scholar 

  • Bläsing O.E., Westhoff P. & Svensson P. 2000. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J. Biol. Chem. 275: 27917–27923.

    PubMed  Google Scholar 

  • Bräutigam A., Hoffmann-Benning S. & Weber A.P. 2008. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol. 148: 568–579. Erratum. Plant Physiol. 148: 1734.

    Article  PubMed  Google Scholar 

  • Bräutigam A. & Weber A.P. 2011. Do metabolite transport processes limit photosynthesis? Plant Physiol. 155: 43–48.

    Article  PubMed  Google Scholar 

  • Bräutigam A., Kajala K., Wullenweber J., Sommer M., Gagneul D., Weber K.L., Carr K.M., Gowik U., Mass J., Lercher M.J., Westhoff P., Hibberd J.M. & Weber A.P. 2011. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol. 155: 142–156.

    Article  PubMed  Google Scholar 

  • Brown R.H. 1999. Agronomic implications of C4 photosynthesis, pp. 473–507. In: Sage R.F. & Monson R.K. (eds), C4 plant biology, Academic Press, San Diego.

    Chapter  Google Scholar 

  • Brown N.J., Newell C.A., Stanley S., Chen J.E., Perrin A.J., Kajala K. & Hibberd J.M. 2011. Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science 331: 1436–1439.

    Article  PubMed  CAS  Google Scholar 

  • Cegelski L. & Schaefer J. 2006. NMR determination of photorespiration in intact leaves using in vivo 13CO2 labeling. J. Magn. Reson. 178: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Cerling T.E., Harris J.M., MacFadden B.J., Leakey M.G., Quade J., Eisenmann V. & Ehleringer J.R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158.

    Article  CAS  Google Scholar 

  • Chang Y.M., Liu W.Y., Shih A.C., Shen M.N., Lu C.H., Lu M.Y., Yang H.W., Wang T.Y., Chen S.C., Chen S.M., Li W.H. & Ku M.S. 2012. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol. 160: 165–177.

    Article  PubMed  CAS  Google Scholar 

  • Chastain C.J., Failing C.J., Manandhar L., Zimmerman M.A., Lakner M.M. & Nguyen T.H. 2011. Functional evolution of C4 pyruvate, orthophosphate dikinase. J. Exp. Bot. 62: 3083–3091.

    Article  PubMed  CAS  Google Scholar 

  • Cheng S.H., Moore B.D., Edwards G.E. & Ku M.S.B. 1988. Photosynthesis in Flaveria brownii, a C4-like species. Plant Physiol. 87: 867–873.

    Article  PubMed  CAS  Google Scholar 

  • Christin P.A., Besnard G., Samaritani E., Duvall M.R., Hodkinson T.R., Savolainen V. & Salamin N. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Christin P.A. & Besnard G. 2009. Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. Am. J. Bot. 96: 2234–2239.

    Article  PubMed  CAS  Google Scholar 

  • Christin P.A., Freckleton R.P. & Osborne C.P. 2010. Can phylogenetics identify C4 origins and reversals? Trends Ecol. Evol. 6: 95–99.

    Google Scholar 

  • Christin P.A., Osborne C.P., Sage R.F., Arakaki M. & Edwards E.J. 2011. C4 eudicots are not younger than C4 monocots. J. Exp. Bot. 62: 3171–3181.

    Article  PubMed  CAS  Google Scholar 

  • Cowling S.A. & Sage R.F. 1998. Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant Cell Environ. 21: 427–435.

    Article  CAS  Google Scholar 

  • Danker T., Dreesen B., Offermann S., Horst I. & Peterhansel C. 2008. Developmental information but not promoter activity controls the methylation state of histone H3 lysine 4 on two photosynthetic genes in maize. Plant J. 53: 465–474.

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E., Alvarez C.E., Saigo M., Andreo C.S. & Drincovich M.F. 2007. Identification of domains involved in tetramerization and malate inhibition of maize C4-NADP-malic enzyme. J. Biol. Chem. 282: 6053–6060.

    Article  PubMed  CAS  Google Scholar 

  • Edwards E.J., Osborne C.P., Strömberg C.A., Smith S.A., C4 Grasses Consortium., Bond W.J., Christin P.A., Cousins A.B., Duvall M.R., Fox D.L., Freckleton R.P., Ghannoum O., Hartwell J., Huang Y., Janis C.M., Keeley J.E., Kellogg E.A., Knapp A.K., Leakey A.D., Nelson D.M., Saarela J.M., Sage R.F., Sala O.E., Salamin N., Still C.J. & Tipple B. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science. 328: 587–591.

    Article  PubMed  CAS  Google Scholar 

  • Edwards G.E. & Voznesenskaya E.V. 2011. C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants, pp. 29–61. In: Raghavendra A.S. & Sage R.F. (eds), C4 Photosynthesis and Related CO2 Concentrating Mechanisms, Springer, Dordrecht.

    Google Scholar 

  • Ehleringer J.R. & Monson R.K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24: 411–439.

    Article  Google Scholar 

  • Ehleringer J.R., Cerling T.E. & Helliker B.R. 1997. C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112: 285–299.

    Article  Google Scholar 

  • Ehleringer J.R. 2005. The influence of atmospheric CO2, temperature, and water on the abudance of C3/C4 taxa, pp. 214–231. In: Ehleringer J.R., Cerling T.E. & Dearing M.D. (eds), A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Ecological Studies, Vol 177. Springer, New York.

    Chapter  Google Scholar 

  • Friso G., Majeran W., Huang M., Sun Q. & van Wijk K.J. 2010. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol. 152: 1219–1250.

    Article  PubMed  CAS  Google Scholar 

  • Fukayama H., Tsuchida H., Agarie S., Nomura M., Onodera H., Ono K., Lee B.H., Hirose S., Toki S., Ku M.S.B., Makino A., Matsuoka M. & Miyao M. 2001. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol. 127: 1136–1146.

    Article  PubMed  CAS  Google Scholar 

  • Fukayama H., Hatch M.D., Tamai T., Tsuchida H., Sudoh S., Furbank R.T. & Miyao M. 2003. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth. Res. 77: 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Furumoto T., Yamaguchi T., Ohshima-Ichie Y., Nakamura M., Tsuchida-Iwata Y., Shimamura M., Ohnishi J., Hata S., Gowik U., Westhoff P., Bräutigam A., Weber A.P. & Izui K. 2011. A plastidial sodium-dependent pyruvate transporter. Nature 476: 472–475.

    Article  PubMed  CAS  Google Scholar 

  • Gowik U., Burscheidt J., Akyildiz M., Schlue U., Koczor M., Streubel M. & Westhoff P. 2004. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16: 1077–1090.

    Article  PubMed  CAS  Google Scholar 

  • Gowik U. & Westhoff P. 2011. The path from C3 to C4 photosynthesis. Plant Physiol. 155: 56–63.

    Article  PubMed  CAS  Google Scholar 

  • Gowik U., Brautigam A., Weber K.L., Weber A.P. & Westhoff P. 2011. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell 23: 2087–2105.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths H., Weller G., Toy L.F. & Dennis R.J. 2013. You’re so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant Cell Environ. 36: 249–261.

    Article  PubMed  CAS  Google Scholar 

  • Hibberd J.M. & Covshoff S. 2010. The regulation of gene expression required for C4 photosynthesis. Annu. Rev. Plant Biol. 61: 181–207.

    Article  PubMed  CAS  Google Scholar 

  • Horst I., Offermann S., Dreesen B., Niessen M. & Peterhansel C. 2009. Core promoter acetylation is not required for high transcription from the phosphoenolpyruvate carboxylase promoter in maize. Epigenet Chromatin 2: 17.

    Article  Google Scholar 

  • Jacobs B., Engelmann S., Westhoff P., Gowik U. 2008. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria: determinants for high tolerance towards the inhibitor L-malate. Plant Cell Environ. 31: 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Kajala K., Covshoff S., Karki S., Woodfield H., Tolley B.J., Dionora M.J.A., Mogul R.T., Mabilangan A.E., Danila F.R., Hibberd J.M. & Quick W.P. 2011. Strategies for engineering a two-celled C4 photosynthetic pathway into rice. J. Exp. Bot. 62: 3001–3010.

    Article  PubMed  CAS  Google Scholar 

  • Kajala K., Brown N.J., Williams B.P., Borrill P., Taylor L.E. & Hibberd J.M. 2012. Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. Plant J. 69: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Kapralov M.V., Kubien D.S., Andersson I. & Filatov D.A. 2011. Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme. Mol. Biol. Evol. 28: 1491–503.

    Article  PubMed  CAS  Google Scholar 

  • Kausch A.P., Owen T.P., Zachwieja S.J., Flynn A.R. & Sheen J. 2001. Mesophyll-specific, light and metabolic regulation of the C4 PPCZm1 promoter in transgenic maize. Plant Mol. Biol. 45: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Ku M.S.B., Monson R.K., Littlejohn R.O., Nakamoto H., Fisher D.B. & Edwards G.E. 1983. Photosynthetic characteristics of C3-C4 intermediate Flaveria species: I. Leaf anatomy, photosynthetic responses to O2 and CO2, and activities of key enzymes in the C3 and C4 pathways. Plant Physiol. 71: 944–948.

    Article  PubMed  CAS  Google Scholar 

  • Ku M.S.B., Wu J.R., Dai Z.Y., Scott R.A., Chu C. & Edwards G.E. 1991. Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiol. 96: 518–528.

    Article  PubMed  CAS  Google Scholar 

  • Ku M.S.B., Agarie S., Nomura M., Fukayama H., Tsuchida H., Ono K., Hirose S., Toki S., Miyao M. & Matsuoka M. 1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol. 17: 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Lai L.B., Wang L. & Nelson T.M. 2002. Distinct but conserved functions for two chloroplasticNADP-malic enzyme isoforms in C3 and C4 Flaveria species. Plant Physiol. 128: 125–39.

    Article  PubMed  CAS  Google Scholar 

  • Langdale J.A. & Nelson T. 1991. Spatial regulation of photosynthetic development in C4 plants. Trends Genet. 7: 191–196.

    PubMed  CAS  Google Scholar 

  • Langdale J.A., Taylor W.C. & Nelson T. 1991. Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site greater than 3 kb upstream of the gene. Mol. Gen. Genet. 225: 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Langdale J.A. 2011. C4 cycle: past, present, and future research on C4 photosynthesis. Plant Cell 23: 3879–3892.

    Article  PubMed  CAS  Google Scholar 

  • Li J., Gong X., Lin H., Song Q., Chen J. & Wang X. 2005. DGP1, a drought-induced guard cell-specific promoter and its function analysis in tobacco plants. Sci. China C. Life Sci. 48: 181–186.

    PubMed  CAS  Google Scholar 

  • Li P., Ponnala L., Gandotra N., Wang L., Si Y., Tausta S.L., Kebrom T.H., Provart N., Patel R., Myers C.R., Reidel E.J., Turgeon R., Liu P., Sun Q., Nelson T. & Brutnell T.P. 2010. The developmental dynamics of the maize leaf transcriptome. Nat Genet. 42: 1060–1067.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z. & Sun N. 2013. Enhancing photosynthetic CO2 use efficiency in rice: approaches and challenges. Acta Physiol Plant. 35: 1001–1009.

    Article  Google Scholar 

  • Ludwig M. 2012. Carbonic anhydrase and the molecular evolution of C4 photosynthesis. Plant Cell Environ. 35: 22–37.

    Article  PubMed  CAS  Google Scholar 

  • Majeran W., Cai Y., Sun Q. & van Wijk K.J. 2005. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17: 3111–3140.

    Article  PubMed  CAS  Google Scholar 

  • Majeran W., Zybailov B., Ytterberg A.J., Dunsmore J., Sun Q. & van Wijk K.J. 2008. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell Proteomics 7: 1609–1638.

    Article  PubMed  CAS  Google Scholar 

  • Majeran W., Friso G., Ponnala L., Connolly B., Huang M., Reidel E., Zhang C., Asakura Y., Bhuiyan N.H., Sun Q., Turgeon R. & van Wijk K.J. 2010. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell 22: 3509–3542.

    Article  PubMed  CAS  Google Scholar 

  • Marshall J.S., Stubbs J.D., Chitty J.A., Surin B. & Taylor W.C. 1997. Expression of the C4 Me1 gene from Flaveria bidentis requires an interaction between 5′ and 3′ sequences. Plant Cell 9: 1515–1525.

    PubMed  CAS  Google Scholar 

  • Marshall D.M., Muhaidat R., Brown N.J., Liu Z., Stanley S., Griffiths H., Sage R.F. & Hibberd J.M. 2007. Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant J. 51: 886–96.

    Article  PubMed  CAS  Google Scholar 

  • Masumoto C., Miyazawa S.I., Ohkawa H., Fukuda T., Taniguchi Y., Murayama S., Kusano M., Saito K., Fukayama H. & Miyao M. 2010. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Natl. Acad. Sci. USA 107: 5226–5231.

    Article  PubMed  CAS  Google Scholar 

  • McKown A.D. & Dengler N.G. 2007. Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am. J. Bot. 94: 382–399.

    Article  PubMed  Google Scholar 

  • Miyao M. 2003. Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J. Exp. Bot. 54: 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Miyao M., Masumoto C., Miyazawa S. & Fukayama H. 2011. Lessons from engineering a single-cell C4 photosynthetic pathway into rice. J. Exp. Bot. 62: 3021–3029.

    Article  PubMed  CAS  Google Scholar 

  • Monson R.K. & Moore B.D. 1989. On the significance of C3-C4 intermediate photosynthesis to the evolution of C4 photosynthesis. Plant Cell Environ. 12: 689–699.

    Article  CAS  Google Scholar 

  • Monson R.K. 1999. The origins of C4 genes and evolutionary pattern in the C4 metabolic phenotype, pp. 377–410. In: Sage R.F. & Monson R.K. (eds), C4 plant biology, Academic Press, San Diego.

    Chapter  Google Scholar 

  • Monson R.K. 2003. Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164: S43–S54.

    Article  CAS  Google Scholar 

  • Moore B.D., Monson R.K., Ku M.S.B. & Edwards G.E. 1988. Activities of principal photosynthetic and photorespiratory enzymes in leaf mesophyll and bundle sheath protoplasts from the C3-C4 intermediate Flaveria ramosissima. Plant Cell Physiol. 29: 999–1006.

    CAS  Google Scholar 

  • Morgan C.L., Turner S.R. & Rawsthorne S. 1993. Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera. Planta 190: 468–473.

    Article  CAS  Google Scholar 

  • Muhaidat R., Sage R.F. & Dengler N.G. 2007. Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am. J. Bot. 94: 362–381.

    Article  PubMed  CAS  Google Scholar 

  • Muhaidat R., Sage T.L., Frohlich M.W., Dangler N.G. & Sage R.F. 2011. Characterization of C3-C4 intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity. Plant Cell Environ. 34: 1723–1736.

    Article  PubMed  CAS  Google Scholar 

  • Osborne C.P. & Sack L. 2012. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil. Trans. R. Soc. B. 367: 583–600.

    Article  PubMed  CAS  Google Scholar 

  • Patel M., Siegel A.J. & Berry J.O. 2006. Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specific gene expression in leaves of a C4 plant. J Biol Chem. 281: 25485–25491.

    Article  PubMed  CAS  Google Scholar 

  • Peterhansel C., Horst I., Niessen M., Blume C., Kebeish R., Kurkcuoglu S. & Kreuzaler F. 2010. Photorespiration, e0130[2010-3-23]. In: The Arabidopsis book. American Society of Plant Biologists, Rockville. http://www.bioone.org/doi/pdf/10.1199/tab.0130

    Google Scholar 

  • Peterhansel C. 2011. Best practice procedures for the establishment of a C4 cycle in transgenic C3 plants. J Exp. Bot. 62: 3011–3019.

    Article  PubMed  CAS  Google Scholar 

  • Rawsthorne S., Hylton C.M., Smith A.M. & Woolhouse H.W. 1988. Distribution of photorespiratory enzymes between bundle-sheath and meso phyll cells in leaves of the C3-C4 intermediate species Moricandia arvensis (L.) DC. Planta 176: 527–532.

    Article  CAS  Google Scholar 

  • Reed J.E. & Chollet R. 1985. Immunofiuorescent localization of phosphoenolpyruvate carboxylase and ribulose 1,5-bisphosphate carboxylase/oxygenase proteins in leaves of C3, C4, and C3-C4 intermediate Flaveria species. Planta 165: 439–445.

    Article  CAS  Google Scholar 

  • Rondeau P., Rouch C. & Besnard G. 2005. NADP-malate dehydrogenase gene evolution in Andropogoneae (Poaceae): gene duplication followed by sub-functionalization. Ann. Bot. 96: 1307–1314.

    Article  PubMed  CAS  Google Scholar 

  • Rosche E. & Westhoff P. 1995. Genomic structure and expression of the pyruvate, orthophosphate dikinase gene of the dicotyledonous C4 plant Flaveria trinervia (Asteraceae). Plant Mol. Biol. 29: 663–678.

    Article  PubMed  CAS  Google Scholar 

  • Roth-Nebelsick A., Uhl D., Mosbrugger V. & Hans K. 2001. Evolution and function of leaf venation architecture: A review. Ann. Bot. 87: 553–566.

    Article  Google Scholar 

  • Rundel P.W. 1980. The ecological distribution of C4 and C3 grasses in the Hawaiian Islands. Oecologia 45: 354–359.

    Article  Google Scholar 

  • Sage R.F. 2004. The evolution of C4 photosynthesis. New Phytol. 161: 341–370.

    Article  CAS  Google Scholar 

  • Sage R.F. & Sage T.L. 2008. Learning from nature to develop strategies for the directed evolution of C4 rice, pp. 195–216. In: Sheehy J.E., Mitchell P.L. & Hardy B., (eds), Charting New Pathways to C4 Rice, World Scientific Publishing Co. Pte. Ltd, Singapore.

    Chapter  Google Scholar 

  • Sage R.F., Christin P.A. & Edwards E.J. 2011a. The C4 plant lineages of planet Earth. J. Exp. Bot. 62: 3155–3169.

    Article  PubMed  CAS  Google Scholar 

  • Sage T.L., Sage R.F., Vogan P.J., Rahman B., Johnson D.C., Oakley J.C. & Heckel M.A. 2011b. The occurrence of C2 photosynthesis in Euphorbia subgenus Chamaesyce (Euphorbiaceae). J. Exp. Bot. 62: 3183–3195.

    Article  PubMed  CAS  Google Scholar 

  • Sage R.F., Sage T.L. & Kocacinar F. 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63: 19–47.

    Article  PubMed  CAS  Google Scholar 

  • Shatil-Cohen A., Attia Z. & Moshelion M. 2011. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J. 67: 72–80.

    Article  PubMed  CAS  Google Scholar 

  • Sheehy J.E. & Mitchell P.L. 2011. Rice and global food security: the race between scientific discovery and catastrophe, pp. 81–90. In: Pasternak C. (ed.), Access not Excess. The Search for Better Nutrition. Smith-Gordon, Cambridgeshire.

    Google Scholar 

  • Sheen J. 1990. Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038.

    PubMed  CAS  Google Scholar 

  • Suzuki S., Murai N., Kasaoka K., Hiyoshi T., Imaseki H., Burnell J.N. & Arai M. 2006. Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci. 170: 1010–1019.

    Article  CAS  Google Scholar 

  • Taniguchi Y., Nagasaki J., Kawasaki M., Miyake H., Sugiyama T. & Taniguchi M. 2004. Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize. Plant Cell Physiol. 45: 187–200.

    Article  PubMed  CAS  Google Scholar 

  • Teeri J.A. & Stowe L.G. 1976. Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23: 1–12.

    Google Scholar 

  • Tieszen L.L., Reed B.B., Bliss B.B., Wylie B.K. & DeJong D.D. 1997. NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes. Ecol. Appl. 7: 59–78.

    Google Scholar 

  • Tipple B.J. & Pagani M. 2007. The early origins of terrestrial C4 photosynthesis. Annu. Rev. Earth Planet Sci. 35: 435–61.

    Article  CAS  Google Scholar 

  • Voznesenskaya E.V., Koteyeva N.K., Chuong S.D.X., Ivanova A.N., Barroca J., Craven L.A. & Edwards G.E. 2007. Physiological, anatomical and biochemical characterisation of photosynthetic types in genus Cleome (Cleomaceae). Funct. Plant Biol. 34: 247–267.

    Article  CAS  Google Scholar 

  • Wan C.S.M. & Sage R.F. 2001. Climate and the distribution of C4 grasses along the Atlantic and Pacific coasts of North America. Can. J. Bot. 79: 474–86.

    Google Scholar 

  • Wang X., Gowik U., Tang H., Bowers J.E., Westhoff P. & Paterson A.H. 2009. Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol. 10: R68.

    Article  PubMed  Google Scholar 

  • Weber A.P. & von Caemmerer S. 2010. Plastid transport and metabolism of C3 and C4 plants — comparative analysis and possible biotechnological exploitation. Curr. Opin. Plant Biol. 13: 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Williams B.P., Aubry S. & Hibberd J.M. 2012. Molecular evolution of genes recruited into C4 photosynthesis. Trends Plant Sci. 17: 213–220.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Sun, N., Yang, S. et al. Evolutionary transition from C3 to C4 photosynthesis and the route to C4 rice. Biologia 68, 577–586 (2013). https://doi.org/10.2478/s11756-013-0191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0191-5

Key words

Navigation