Abstract
It is not easy to manipulate biosynthetic genes of Bacillus thuringiensis since there is a powerful methyl-specific restriction system in this microorganism. In this study, a PCR-based system was used to delete polyphosphate kinase gene (ppk) of Bacillus thuringiensis israelensis (Bti) by replacing the wild-type gene with a cassette containing the apramycin resistance gene as selectable marker. λ-Red was used to promote recombination in Escherichia coli between a PCR-amplified apramycin resistance cassette (linear deletion cassette selectable in E. coli and Bti) and Bti DNA on a plasmid. The isolated mutant plasmid was transferred to Bti by conjugation. Double cross-over transformants were screened for their antibiotic resistance and the mutation was proven by PCR, southern blot hybridization and RT-PCR. The described method, which uses the advantage of quick plasmid construction in E. coli and simple transformation of linear deletion cassette, is very useful to delete entire gene/genes of Bti without any polar effects on genes transcriptionally downstream.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- aac(3)IV :
-
aminoglycoside 3-N-acetyltransferase gene
- Ap:
-
ampicilin
- Apr:
-
apramycin
- BHI:
-
brain heart infusion
- Bti :
-
Bacillus thuringiensis subsp. israelensis
- Chl:
-
chloramphenicol
- Er:
-
erythromycin
- ermB :
-
rRNA adenine N-6-methyltransferase gene
- Kn:
-
kanamycin
- LB:
-
Luria Bertani
- ppk :
-
polyphosphate kinase gene
References
Abremski K., Hoess R. & Sternberg N. 1983. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32: 1301–1311.
Arantes O. & Lereclus D. 1991. Construction of cloning vectors for Bacillus thuringiensis. Gene 108: 115–119.
Bone J. & Ellar D.J. 1989. Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol. Lett. 58: 171–177.
Cherepanov P.P. & Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9–14.
Crickmore N., Zeigler D.R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J. & Dean D.H. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807–813.
Datsenko K.A. & Wanner B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640–6645.
Delecluse A., Charles J.F., Klier A. & Rapoport G. 1991. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J. Bacteriol. 173: 3374–3381.
Fabret C., Ehrlich S.D. & Noirot P. 2002. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol. Microbiol. 46: 25–36.
Gust B., Challis G.L., Fowler K., Kieser T. & Chater K.F. 2003. PCR targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100: 1541–1546.
Hanahan D. 1985. Techniques for transformation of E. coli, pp. 109–135. In: Glover D.M. (ed.), DNA Cloning: A Practical Approach, IRL Press, Oxford.
Janes B.K. & Stibitz S. 2006. Routine markerless gene replacement in Bacillus anthracis. Infect. Immun. 74: 1949–1953.
Klimowicz A.K., Benson T.A. & Handelsman J. 2010. A quadruple-enterotoxin-deficient mutant of Bacillus thuringiensis remains insecticidal. Microbiology 156: 3575–3583.
MacNeil D.J., Gewain K.M., Ruby C.L., Dezeny G., Gibbons P.H. & MacNeil T. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61–68.
Paget M.S.B., Chamberlin L., Atrih A., Foster S.J. & Buttner M.J. 1999. Evidence that the extracytoplasmic function sigma factor σ E is required for normal cell wall structure in Streptomyces coelicolor A3 (2). J. Bacteriol. 181: 204–211.
Poncet S., Anello G., Delecluse A., Klier A. & Rapoport G. 1993. Role of the CryIVD polypeptide in the overall toxicity of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 59: 3928–3930.
Salamitou S., Ramisse F., Brehelin M., Bourguet D., Gilois N., Gominet M., Hernandez E. & Lereclus D. 2000. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146: 2825–2832.
Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Shevchuk N.A., Bryksin A.V., Nusinovich Y.A., Cabello F.C., Sutherland M. & Ladisch S. 2004. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res. 32: e19.
Southern E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.
Sun W., Wang S. & Curtiss III R. 2008. Highly efficient method for introducing successive multiple scarless gene deletions and markerless gene insertions into the Yersinia pestis chromosome. Appl. Environ. Microbiol. 74: 4241–4245.
Tunca S., Barreiro C., Coque J.J., Sola-Landa A. & Martin J.F. 2007. Transcriptional analysis of the iron regulation and desferrioxamine gene cluster of Streptomyces coelicolor A3(2). FEBS J. 274: 1110–1122.
Uzzau S., Figueroa-Bossi N., Rubino S. & Bossi L. 2001. Epitope tagging of chromosomal genes in Salmonella. Proc.Natl. Acad. Sci. USA 98: 15264–15269.
Vagner V., Dervyn E. & Ehrlich S.D. 1998. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144: 3097–3104.
Xin Y., Yu H.J., Hong Q. & Li S.P. 2008. Cre/lox system and PCR based genome engineering in Bacillus subtilis. Appl. Environ. Microbiol. 74: 5556–5562.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Doruk, T., Gedik, S.T. An efficient gene deletion system for Bacillus thuringiensis . Biologia 68, 358–364 (2013). https://doi.org/10.2478/s11756-013-0184-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11756-013-0184-4

