Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress

Abstract

This investigation was carried on to find out the changes occurred in Stevia rebaudiana in response to paclobutrazol (PBZ; 0–4 mg L−1) treatment and drought stress. Polyethylene glycol (PEG; 0–6 % w/v) was used to stimulate drought stress. Drought stress reduced fresh and dry weight, water content, chlorophylls, carotenoids, anthocyanins, water soluble carbohydrates, reducing sugar and proline amounts. Electrolyte leakage, MDA, α-tocopherol and glycine betaine contents increased in drought-stressed plants. The activity of P5CS and PDH enzymes and protein content showed no significant changes under drought stress. PBZ (with or without PEG) treatments decreased fresh and dry weight and water content. In PBZ-treated plants, less pigments was damaged by drought stress. PBZ treatment reduced the negative effect of drought stress on lipid peroxidation which resulted in lower electrolyte leakage and MDA content, compared to the same PEG level without PBZ. PBZ (with or without PEG) treatments increased glycine betaine, α-tocopherol, proline and protein contents. The amount of water soluble carbohydrates, reducing sugar and activity of P5CS and PDH were not affected by PBZ treatments. SDS-PAGE analysis revealed that drought stress increased a 25 kD protein with a critical function in plant development under stresses. According to the results, PEG provoked a severe drought stress in S. rebaudiana that could partly be restored by PBZ treatment.

This is a preview of subscription content, access via your institution.

Abbreviations

MDA:

malondialdehyde

MS:

Murashige and Skoog

P5CS:

D1-pyrroline-5-carboxylate synthetase

PBZ:

paclobutrazol

PDH:

proline dehydrogenase

PEG:

polyethylene glycol

RS:

reducing sugar

SDS-PAGE:

sodium dodecyl sulphate-polyacrylamide gel electrophoresis

SVglys:

steviol glycosides

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

WSC:

water soluble carbohydrate

References

  1. Aly A.A. & Latif H.H. 2011. Differential effects of paclobutrazol on water stress alleviation through electrolyte leakage, phytohormones, reduced glutathione and lipid peroxidation in some wheat genotypes (Triticum aestivum L.) grown invitro. Romanian Biotechnol. Lett. 16: 6710–6721.

    CAS  Google Scholar 

  2. Amini F., Ehsanpour A.A., Hoang Q.T. & Shin J.S. 2007. Protein pattern changes in tomato under in vitro salt stress. Russ. J. Plant Physiol. 54: 464–471.

    Article  CAS  Google Scholar 

  3. Anjum S.A., Xie X., Wang L., Saleem M.F., Man C. & Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6: 2026–2032.

    Google Scholar 

  4. Backer H., Frank O., De Angells B. & Feingold S. 1980. Plasma tocopherol in man at various times after ingesting free or ocetylaned tocopherol. Nutr. Rep. Int. 21: 531–536.

    Google Scholar 

  5. Bates L., Waldren R.P. & Tear I.P. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39: 205–207.

    Article  CAS  Google Scholar 

  6. Bradford M. 1976. A rapid and sensitive method for the quantification of microgram quantities in utilizing the principle of protein-dye binding. Anal. Biochem. 72: 284–254.

    Article  Google Scholar 

  7. Chaitanya K.V., Rasineni G.K. & Reddy A.R. 2009. Biochemical responses to drought stress in mulberry (Morus alba L.): evaluation of proline, glycine betaine and abscisic acid accumulation in five cultivars. Acta Physiol. Plant. 31: 437–443.

    Article  CAS  Google Scholar 

  8. Dani V., Simon W.J., Duranti M. & Croy, R.R. 2005. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5: 737–745.

    PubMed  Article  CAS  Google Scholar 

  9. Demming-Adams B. 1990. Carotenoids and photoprotection in plants: A role for xanthophylls zeaxenthin. Biochem. Biophys. Acta 1020: 1–24.

    Article  Google Scholar 

  10. Demiral T. & Turkan I. 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 161: 1089–1110.

    PubMed  Article  CAS  Google Scholar 

  11. Dubois M., Gilles K.A., Hamilton J.K., Reberts P.A. & Smith F. 1956. Colorimetric method for determination of sugar and related substrates. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  12. Farooq M., Wahid A., Kobayashi N., Fujita D. & Basra S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29: 185–212.

    Article  Google Scholar 

  13. Fletcher R., Gilley A., Sankhlam N. & Davis T.D. 2000. Triazoles as plant growth regulators and stress protectants. Hortic. Rev. 2: 55–138.

    Google Scholar 

  14. Geuns J.M.C. 2003. Stevioside. Phytochemistry 64: 913–921.

    PubMed  Article  CAS  Google Scholar 

  15. Gregersen S., Jeppesen P.B., Holst J.J. & Hermansen K. 2004. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metab. Clin. Exp. 53: 73–76.

    PubMed  Article  CAS  Google Scholar 

  16. Grieve C.M. & Grattan S.R. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70: 303–307.

    Article  CAS  Google Scholar 

  17. Hames B.D. 1990. One dimensional polyacrylamide gel electrophoresis. In: Hames B.D. & Rickwood D. (eds), Gel Electrophoresis of Protein, 2nd ed. Oxford University Press, New York, 382 pp.

    Google Scholar 

  18. Heath R. & Packer L. 1968. Photoperoxidation in isolated chloroplasts: 1. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189–198.

    PubMed  Article  CAS  Google Scholar 

  19. Herrmann K.M. 1995. The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7: 907–919.

    PubMed  CAS  Google Scholar 

  20. Larson R.A. 1988. The antioxidants of higher plants. Phytochemistry 27: 969–978.

    Article  CAS  Google Scholar 

  21. Lichtenthaler H.K. & Wellburn A. 1983. Determination of total carotenoids and chlorophylls a and b of leaf in extracts in different solvents. Biochem. Soc. Trans. 603: 591–592.

    Google Scholar 

  22. Marshall J.G., Rutledge R.G., Blumwald E. & Dumbroff E.B. 2000. Reduction in turgid water volume in jack pine, white spruce and black spruce in response to drought and paclobutrazol. Tree Physiol. 20: 701–707.

    PubMed  Article  CAS  Google Scholar 

  23. McNeil S.D., Nuccio M.L. & Hanson A.D. 1999. Betaines and related osmoprotectants: targets for metabolic engineering of stress resistance. Plant Physiol. 120: 945–950.

    PubMed  Article  CAS  Google Scholar 

  24. Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–479.

    Article  CAS  Google Scholar 

  25. Murillo-Amadaor B., Lopez-Aguilar R., Kaya C., Larrinaga-Mayoral J. & Flores-Hernandez A. 2002. Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J. Agron. Crop Sci. 188: 235–247.

    Article  Google Scholar 

  26. Navarra A., Jesús Sánchez-Blanco M. & Bañon S. 2007. Influence of paclobutrazol on water consumption and plant performance of Arbutus unedo seedlings. Scientia Hortic. 111: 133–139.

    Article  Google Scholar 

  27. Raymond M.J. & Smirnoff N. 2002. Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. (Lond). 89: 813–823.

    Article  CAS  Google Scholar 

  28. Rena A.B. & Splittstosser W.E. 1975. Proline dehydrogenase and pyrroline-5-carboxylate reductase from pumpkin cotyledons. Phytochemistry 14: 657–661.

    Article  CAS  Google Scholar 

  29. Riccardi F., Gazeau P. & Vienne D. 1998. Protein changes in response to progressive water deficit in maize, quantitative variation and polypeptide identification. Plant Physiol. 117: 1253–1263.

    PubMed  Article  CAS  Google Scholar 

  30. Sankar B., Abdul Jaleel C., Manivannan P., Kishorekumar A., Somasundaram R. & Panneerselvam R. 2007. Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids Surf B: Biointerfaces 60: 229–235.

    Article  CAS  Google Scholar 

  31. Shao H.B., Chu L.Y., Jaleel C.A., Manivannan P., Panneerselvam R. & Shao M.A. 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 29: 131–151.

    PubMed  Article  CAS  Google Scholar 

  32. Shukla S., Mehta A., Mehta P. & Bajpai V.K. 2012. Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert. Exp. Toxico. Pathol. 64: 807–811.

    Article  CAS  Google Scholar 

  33. Somogy M. 1952. Notes on sugar determination. J. Bioche. Chem. 195: 19–29.

    Google Scholar 

  34. Stines A.P., Naylor D.J., Hoj P.B. & Heeswijck R.V. 1999. Proline accumulation in developing grapevine fruit occurs independently of changes in the level of pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiol. 120: 923–931.

    PubMed  Article  CAS  Google Scholar 

  35. Sultana N., Ikeda T. & Itoh R. 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ. Exp. Bot. 42: 211–220.

    Article  CAS  Google Scholar 

  36. Valentovič P., Luxová M., Kolarovič L. & Gašpariková O. 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Cell Environ. 52: 186–191.

    Google Scholar 

  37. Wanger G.J. 1979. Content and vacuole/extra vacuole distribution of neutral sugars, free amino acids, and anthocyanins in protoplasts. Plant Physiol. 64: 88–93.

    Article  Google Scholar 

  38. Wang X. & Quinn P.J. 2000. The location and function of vitamin E in membranes. Mol. Membr. Biol. 17: 143–156.

    PubMed  Article  Google Scholar 

  39. Zhu L.H., Peppal A., Li X.Y. & Welander M. 2004. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Sci. Hortic. 99: 133–141.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Ehsanpour.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hajihashemi, S., Ehsanpour, A.A. Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biologia 68, 414–420 (2013). https://doi.org/10.2478/s11756-013-0165-7

Download citation

Key words

  • Stevia rebaudiana
  • drought stress
  • growth
  • osmolytes
  • paclobutrazol
  • ROS