Skip to main content

Advertisement

Log in

Protection against experimental salmonellosis by recombinant 49 kDa OMP of Salmonella enterica serovar Typhi: biochemical aspects

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Typhoid fever is systemic illness caused by Salmonella enterica serovar Typhi (S. Typhi) in humans. Increasing multidrug resistant strains of S. Typhi and limited effect of available vaccines has necessitated exploring of new immunogens for protection against it. Earlier studies have shown that a crude preparation of outer membrane proteins (OMPs) of S. Typhi evokes strong immune response and induces a protective immunity against infection caused by diverse Gram-negative bacteria. In the present study we have evaluated the protective effect of a purified recombinant 49 kDa (r49kDa) OMP of S. Typhi alone or along with alum or complete Freund’s adjuvant, against a challenge by S. Typhi (0.4 × 50% lethal dose) by biochemical estimation of serum enzymes and oxidative stress enzymes in Swiss albino mice. There was a decrease in activity of alanine aminotransferase by 14.28%, 38.09%, 23.80%; aspartate aminotransferase by 6.25%, 25%, 16.25%; lipid peroxidation by 4.34%, 18.84%, 11.59%; and catalase by 8%, 14%, 10%, respectively, whereas increase in activity of reduced glutathione by 33.33%, 61.11%, 44.44%; glutathione peroxidase by 7%, 16%, 10%; and glutathione reductase by 8%, 20%, 12%, respectively, as compared to control animals challenged with bacteria without pre-immunization. The results indicated that immunization of mice with r49kDa OMP alone or in combination with adjuvants protected and normalized the liver. It reduces the development of oxidative stress in mice against Salmonella infection and the risk of getting typhoid. These results represent an additional supplement to our earlier reported data on protective immunity evoked by this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALT:

alanine aminotransferase

AST:

aspartate aminotransferase

CAT:

catalase

CFA:

complete Freund’s adjuvant

GPX:

glutathione peroxidase

GR:

glutathione reductase

GSH:

reduced glutathione

IEC:

intestinal epithelial cell

IFA:

incomplete Freund’s adjuvant

LD50:

lethal dose 50%

LPO:

lipid peroxidation

MDA:

malondialdehyde

MDR:

multidrug-resistant

OMP:

outer membrane protein

PMS:

post mitochondrial supernatant

r49kDa:

recombinant 49 kDa

S. Typhi:

Salmonella enterica serovar Typhi

TCA:

trichloroacetic acid

References

  • Abro A.H., Abdou A.M.S., Gangwani J.L., Ustadi A.M., Younis N.J. & Hussaini H.S. 2009. Hematological and biochemical changes in typhoid fever. Pak. J. Med. Sci. 25: 166–171.

    Google Scholar 

  • Akinyemi K., Smith S., Oyefolu A. & Coker A. 2005. Multidrug resistance in Salmonella enterica serovar typhi isolated from patients with typhoid fever complications in Lagos, Nigeria. Public Health 119: 321–7.

    Article  PubMed  CAS  Google Scholar 

  • Allam U.S., Krishna M.G., Lahiri A., Joy O. & Chakravortty D. 2011. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid. PLoS ONE 6: e16667.

    Article  PubMed  CAS  Google Scholar 

  • Anand L., Brajachand N.G. & Dhanachand C.H. 1996. Cryptosporidiosis in HIV infection. J. Commun. Dis. 28: 241–244.

    PubMed  CAS  Google Scholar 

  • Asahi M., Fujji J., Takao T., Kuzuya T., Hori M., Shimonishi Y. & Taniguchi N. 1997. The oxidation of selenocysteine is involved in the inactivation of glutathione peroxidase by nitric oxide donor. J. Biol. Chem. 272: 19152–19157.

    Article  PubMed  CAS  Google Scholar 

  • Ayhan A., Gokoz A., Karacadag S. & Telatar H. 1973. The liver in typhoid fever. Am. J. Gastroenterol. 59: 141–146.

    PubMed  CAS  Google Scholar 

  • Bhunia R., Hutin Y., Ramakrishnan R., Pal N., Sen T. & Murhekar M. 2009. A typhoid fever outbreak in a slum of South Dumdum Municipality, West Bengal, India, 2007: evidence for foodborne and waterborne transmission. BMC Public Health 9: 115.

    Article  PubMed  Google Scholar 

  • Blanco F., Isibasi A., Gonzalez C.R., Ortiz V., Paniagua J., Arregnin C. & Kumate J. 1993. Human cell mediated immunity to porins from Salmonella typhi. Scand. J. Infect. Dis. 25: 73–80.

    PubMed  CAS  Google Scholar 

  • Briviba K., Kissner R., Konnenol W.H. & Sies H. 1998. Kinetic study of the reaction of glutathione peroxide with peroxynitrite. Chem. Res. Toxicol. 11: 1398–1401.

    Article  PubMed  CAS  Google Scholar 

  • Chatfield S.N., Dorman C.J., Hayward C. & Dougan G. 1991. Role of ompR dependent genes in Salmonella typhimurium virulence: mutants deficient in both ompC and ompF are attenuated in vivo. Infect. Immun. 59: 449–452.

    PubMed  CAS  Google Scholar 

  • Cheminay C. & Hensel M. 2008. Rational design of Salmonella recombinant vaccines. Int. J. Med. Microbiol. 298: 87–98.

    Article  PubMed  CAS  Google Scholar 

  • Claiborne A. 1985. Catalase activity, pp. 283–284. In: Greenwald R.A. (ed.), Handbook of Methods for Oxygen Radical Research, CRC Press, Boca Raton, FL.

  • Crump J.A. & Mintz E.D. 2010. Global trends in typhoid and paratyphoid fever. Clin. Infect. Dis. 50: 241–246.

    Article  PubMed  Google Scholar 

  • Dougan G., John V., Palmer S. & Mastroeni P. 2011. Immunity to salmonellosis. Immunol. Rev. 240: 196–210.

    Article  PubMed  CAS  Google Scholar 

  • Dringen R., Pawlowski P.G. & Hirrlinger J. 2005. Peroxide detoxification by brain cells. J. Neurosci. Res. 79: 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Finn G.J. & Condon S. 1975. Regulation of catalase synthesis in Salmonella typhimurium. J. Bacteriol. 123: 570–579.

    PubMed  CAS  Google Scholar 

  • Garmony H.S., Brown K.B. & Titball R.W. 2002. atSalmonella vaccines for use in humans: present and future perspectives. FEMS Microbiol. Rev. 26: 339–353.

    Google Scholar 

  • Godinez I., Haneda T., Raffatellu M., George M.D., Paixao T.A., Rolan H.G., Santos R.L., Dandekar S., Tsolis R.M. & Baumler A.J. 2008. T cells help to amplify inflammatory responses induced by Salmonella enterica serotype Typhimurium in the intestinal mucosa. Infect. Immun. 76: 2008–2017.

    Article  PubMed  CAS  Google Scholar 

  • González-Quintela A., Campos J., Alende R., Lopez-Soto A., Tome S., Otero E. & Torre J.A. 2004. Abnormalities in liver enzyme levels during Salmonella enteritidis enterocolitis. Rev. Esp. Enferm. Dig. 96: 559–566.

    Article  PubMed  Google Scholar 

  • Huang G.C., Chang C.M., Ko W.C., Huang Y.L. & Chuang Y.C. 2005. Typhoid fever complicated by multiple organ involvement: report of two cases. J. Infect. 51: e57–e60.

    Article  PubMed  Google Scholar 

  • Hamid N. & Jain S.K. 2008. Characterization of an outer membrane protein of Salmonella enterica serovar typhimurium that confers protection against typhoid. Clin. Vaccine Immunol. 15: 1461–1471.

    Article  PubMed  CAS  Google Scholar 

  • Hamid N. & Jain S.K 2010. Immunogenic evaluation of a recombinant 49-kilodalton outer membrane protein of Salmonella typhi as a candidate for a subunit vaccine against typhoid. J. Infect. Dis. Immun. 2: 30–40.

    Google Scholar 

  • Ho Y.S., Xiong Y., Ma W., Spector A. & Ho D.S. 2004. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J. Biol. Chem. 279: 32804–32812.

    Article  PubMed  CAS  Google Scholar 

  • Ivanoff B., Levine M.M. & Lambert P.H. 1994. Vaccination against typhoid fever: present status. Bull. World Health Organ. 72: 957–971.

    PubMed  CAS  Google Scholar 

  • Jollow D.J., Mitchell J.R., Zampaglione M. & Gillete J.R. 1974. Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobenzene as the hepatotoxic intermediate. Pharmacol. 11: 151–169.

    Article  CAS  Google Scholar 

  • Kaur J. & Jain S.K. 2012. Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol. Res. 167: 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Keitel W.A., Bond N.L., Zahradnik J.M., Cramton T.A. & Robbins J.B. 1994. Clinical and serological responses following primary and booster immunization with Salmonella typhi Vi capsular polysaccharide vaccines. Vaccine 12: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Khan K.H. 2009. Terminalia chebula reduces the oxidative stress induced by Salmonella typhimurium in mice and may reduce the risk of getting typhoid. Advan. Biol. Res. 3: 1–8.

    Google Scholar 

  • Khosla S.N., Singh R., Singh G.P. & Trehan VK 1988. The spectrum of hepatic injury in enteric fever. Am. J. Gastroenterol. 83: 413–416.

    PubMed  CAS  Google Scholar 

  • Kidd P.M. 1997. Clinical and serological responses following primary and booster immunization with Salmonella typhi Vi capsular polysaccharide vaccines. Alt. Med. Review 2: 155–176.

    Google Scholar 

  • Klotz S.A., Jorgensen J.H., Buckwold F.J. & Craven P.C. 1984. Typhoid fever. An epidemic with remarkably few clinical signs and symptoms. Arch. Intern. Med. 144: 533–537.

    Article  PubMed  CAS  Google Scholar 

  • Kussi N., Nurminen M. & Sravas M. 1981. Immunochemical characterization of major outer membrane components from Salmonella typhimurium. Infect. Immun. 33: 750–757.

    Google Scholar 

  • Levine M.M., Ferreccio C., Abrego P., Martin O.S., Ortiz E. & Cryz S. 1999. Duration of efficacy of Ty21a, attenuated Salmonella typhi live oral vaccine. Vaccine 17: S22–S27.

    Article  PubMed  Google Scholar 

  • Liang-Takasaki C., Saxen H., Makela H. & Lieve L. 1983. Compement activation by polysaccharide and lipopolysaccharide: an important virulence determinant of salmonellae. Infect. Immun. 41: 563–569.

    PubMed  CAS  Google Scholar 

  • Lowry O.H., Rosenbrough N.J., Farr A.L. & Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–268.

    PubMed  CAS  Google Scholar 

  • Majowicz S.E., Musto J., Scallan E., Angulo F.J., Kirk M., O’Brien S.J., Jones T.F., Fazil A. & Hoekstra R.M. 2010. The global burden of non typhoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50: 882–889.

    Article  PubMed  Google Scholar 

  • Mastroeni P. & Menager N. 2003. Development of acquired immunity to salmonella. Med. Microbiol. 52: 453–459.

    Article  CAS  Google Scholar 

  • Merican I. 1997. Typhoid fever: present and future. Med. J. Malaysia 52: 299–308; quiz 309.

    PubMed  CAS  Google Scholar 

  • Mirsadraee M., Shirdel A. & Roknee F. 2007. Typhoid myopathy or typhoid hepatitis: a matter of debate. Indian J. Med. Microbiol. 25: 351–353.

    Article  PubMed  CAS  Google Scholar 

  • Mohandas J., Marshall J.J., Duggin G.G., Horvath J.S. & Tiller D. 1984. Differential distribution of glutathione and glutathione related enzymes in rabbit kidney: possible interactions in analgesic neuropathy. Cancer Res. 44: 5086–5091.

    PubMed  CAS  Google Scholar 

  • Morgenstern R. & Hayes P.C. 1991. The liver in typhoid: always affected, not just a complication. Am. J. Gastroenterol. 86: 1235–1239.

    PubMed  CAS  Google Scholar 

  • Muthukkumar S. & Muthukkaruppan V.R. 1993. Mechanism of protective immunity induced by porin-lipopolysaccharide against murine salmonellosis. Infect. Immun. 61: 3017–3025.

    PubMed  CAS  Google Scholar 

  • Ochiai R.L., Acosta C.J., Danovaro-Holliday M.C., Baiqing D., Bhattacharya S.K., Agtini M.D., Bhutta Z.A., Canh do G., Ali M., Shin S., Wain J., Page A.L., Albert M.J., Farrar J., Abu-Elyazeed R., Pang T., Galindo C.M., von Seidlein L. & Clemens J.D. 2008. A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull. World Health Organ. 86: 260–268.

    Article  PubMed  Google Scholar 

  • Ohkawa H., Ohishi N. & Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 9: 351–358.

    Article  Google Scholar 

  • Ortiz V., Isibasi A., Garcia-Ortigoza E. & Kumate J. 1989. Immunoblot detection of class-specific humoral immune response to outer membrane proteins isolated from Salmonella typhi in humans with typhoid fever. J. Clin. Microbiol. 27: 1640–1645.

    PubMed  CAS  Google Scholar 

  • Ramachandran S., Godfrey J.J. & Perera M.V.F. 1974. Typhoid hepatitis. JAMA 230: 236–240.

    Article  PubMed  CAS  Google Scholar 

  • Recknagel R.O., Glende E.A., Jr Dolak J.A. & Waller R.L. 1991. Mechanisms of carbon tetrachloride toxicity. Pharmacol. Therap. 43: 139–54.

    Article  Google Scholar 

  • Reed J. & Muench H. 1938. A simple method for estimating the fifty percent end points. Am. J. Hyg. 27: 493–497.

    Google Scholar 

  • Reitman S. & Frankel S. 1957. A colorometric method for the determination of serum glutanic oxaloautic and glutamic pyruvic transaminases. Amer. J. Clin. Pathol. 28: 56–63.

    CAS  Google Scholar 

  • Retornaz F., Fournier P.E., Seux V., Jacomo V. & Soubeyrand J. 1999. A case of Salmonella enteritidis septicemia complicated by disseminated intravascular coagulation, severe hepatitis, rhabdomyolisis and acute renal failure. Eur. J. Clin. Microbiol. Infect. Dis. 18: 830–841.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal M.D. & Glew R.H. 2009. Medical Biochemistry: HumanMetabolism in Health and Disease. John Wiley and Sons, Hoboken, NJ.

    Google Scholar 

  • Shetty A.K., Mital S.R., Bahrainwala A.H., Khubchandani R.P. & Kumta N.B. 1999. Typhoid hepatitis in children. J. Trop. Pediatr. 45: 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Simonsen R. & Uirji M.A. 1984. Interpreting the profile of liver-function tests in pediatric liver transplants. Clin. Chem. 30: 1607–1610.

    PubMed  CAS  Google Scholar 

  • Vaca C.E., Wilhelm J. & Harms-Ringdahl M. 1988. Studies on lipid peroxidation in rat liver nuclei and isolated nuclear membranes. Biochim. Biophys. Acta 958: 375–387.

    Article  PubMed  CAS  Google Scholar 

  • Verdugo-Roudriguez A., Gam L.H. & Devi S. 1993. Detection of antibodies against Salmonella typhi outer membrane protein preparation in typhoid fever patients. Asian Pac. J. Allergy Immunol. 11: 45–52.

    Google Scholar 

  • Williams A.T. & Burk R.F. 1990. Carbon tetrachloride heaptotoxicity: an example of free radical-mediated injury. Sem. Liver Dis. 10: 279–284.

    Article  CAS  Google Scholar 

  • Wright J.R., Colby H.D. & Miles P.R. 1981. Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch. Biochem. Biophys. 206: 296–304.

    Article  PubMed  CAS  Google Scholar 

  • Yang B., Qu D., Zhang X., Shen J., Cui S., Shi Y., Xi M., Sheng M., Zhi S. & Meng J. 2010. Prevalence and characterization of Salmonella serovars in retail meats of marketplace in Shaanxi, China. Int. J. Food. Microbiol. 141: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X.L., Jeza V.T. & Pan Q. 2008. Salmonella typhi: from a human pathogen to a vaccine vector. Cell Mol. Immunol. 5: 91–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swatantra K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, J., Jain, S.K. Protection against experimental salmonellosis by recombinant 49 kDa OMP of Salmonella enterica serovar Typhi: biochemical aspects. Biologia 68, 194–201 (2013). https://doi.org/10.2478/s11756-013-0160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0160-z

Key words

Navigation