Skip to main content
Log in

Changes of alkaline phosphatase activity in response to different stressors in planarian Dugesia japonica

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The aims of this work are to provide some properties of alkaline phosphatase (ALP) in the planarian Dugesia japonica and detect its activity in response to different stressors, as well as to introduce renatured SDS-PAGE to study enzyme activity in planarians. Our results indicate that ALPs in planarians are mainly membrane-bound form, identified as three mainly enzyme-bands (approximately MW 260 kD, 180 kD, 160 kD, respectively). Under our experimental conditions, ALPs activity had no apparent changes in response to low concentration of Hg2+ (25 μg L−1) and Pb2+ (125 μg L−1, 250 μg L−1) exposure, but were severely inhibited in response to high concentration of Hg2+ (50 μg L−1, 150 μg L−1, 300 μg L−1) and Pb2+ (500 μg L−1, 1000 μg L−1) exposure. Mild heat shock (25°C for 2 days) elevated ALP activity, but severely heat shock (25°C for 2 days, followed by 30°C for 2 days and 32°C for 2 days) inactivated ALP activity. Interestingly, ALP and other cytosolic phosphatases (MW from ∼45 kD to ∼60 kD) activity increased noticeably during the early stage of planarians regeneration, which may be involved in cell proliferation and differentiation. Contrary to regeneration, prolonged starvation suppressed ALP activity. The above findings provide valuable information about the role of ALP in planarian regeneration and for its use as an indicator in ecotoxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht R., Petit J.L., Calvert V., Terrom G. & Priss C. 2010. Changes in the level of alkaline and acid phosphatase activities during green wastes and sewage sludge co-composting. Bioresour. Technol. 101(1): 228–233. DOI: 10.1016/j.biortech.2009.08.017

    Article  PubMed  CAS  Google Scholar 

  • Alonso A. & Camargo J.A. 2011. The freshwater planarian Polycelis felina as a sensitive species to assess the longterm toxicity of ammonia. Chemosphere 84: 533–537. DOI: 10.1016/j.chemosphere.2011.04.030

    Article  PubMed  CAS  Google Scholar 

  • Andracchi S. & Korte G.E. 1991. Expression of plasma membrane alkaline phosphatase in normal and regenerating choriocapillaris in the rabbit. Acta Anat. (Basel) 141(4): 289–293. DOI: 10.1159/000147137

    Article  CAS  Google Scholar 

  • Bowen E.D., Ryder T.A. & Dark C. 1976. The effects of starvation on the planarian worm Polycelis tenuis Iijima. Cell Tissue Res. 169(2): 193–209. DOI: 10.1007/BF00214208

    Article  PubMed  CAS  Google Scholar 

  • Bublitz R., Armesto J., Hoffmann-Blume E., Schulze M., Rhode H., Horn A., Aulwurm S., Hannappel E. & Fischer W. 1993. Heterogeneity of glycosylphosphatidyl-inositol-anchored alkaline phosphatase of calf intestine. Eur. J. Biochem. 217(1): 199–207. DOI: 10.1111/j.1432-1033.1993.tb18234.x

    Article  PubMed  CAS  Google Scholar 

  • Donachy J.E., Watabe N. & Showman R.M. 1990. Alkaline phosphatase and carbonic anhydrase activity associated with arm regeneration in the seastar Asterias forbesi. Marine Biol. 105(3): 471–447. DOI: 10.1007/BF01316318

    Article  CAS  Google Scholar 

  • Eguchi M. 1995. Alkaline phosphatase isozymes in insects and comparison with mammalian enzyme. Comp. Biochem. Physiol. B 111(2): 151–162. DOI: 10.1016/0305-0491(94)00248-S

    Article  PubMed  CAS  Google Scholar 

  • Gawlik Z., Najberg G., Aleksandrowicz R. & Wiśniewska I.E. 1976. The activity of alkaline phosphatase in the process of regeneration of rat liver. Folia. Histochem. Cytochem. (Krakow) 14: 91–98. PMID: 1270028

    CAS  Google Scholar 

  • Gentile L., Cebrià F. & Bartscherer K. 2011. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Dis. Model Mech. 4: 12–19. DOI: 10.1242/dmm.006692

    Article  PubMed  CAS  Google Scholar 

  • Guecheva T.N., Erdtmann B., Benfato M.S. & Henriques J.A.P. 2003. Stress protein response and catalase activity in fresh water planarian Dugesia (Girardia) schubarti exposed to copper. Ecotoxicol. Environ. Safe. 56(3): 351–357. DOI: 10.1016/S0147-6513(02)00065-9

    Article  CAS  Google Scholar 

  • Hessle L., Johnson K.A., Clarke Anderson H., Narisawa S., Sali A., Goding J.W., Terkeltaub R. & Millan J.L. 2002. Tissue-non specific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. PNAS 99: 9445–9449. DOI: 10.1073/pnas.142063399

    Article  PubMed  CAS  Google Scholar 

  • Hui M., Hu M. & Tenenbaum H.C. 1993. Changes in cell adhesion and cell proliferation are associated with expression of tissue non-specific alkaline phosphatase. Cell Tissue Res. 274(3): 429–437. DOI: 10.1007/BF00314539

    Article  PubMed  CAS  Google Scholar 

  • Husberg C., Agnetti G., Holewinski R.J., Christensen G. & Van Eyk J.E. 2012. Dephosphorylation of cardiac proteins in vitro — a matter of phosphatase specificity. Proteomics. 12(7): 973–978. DOI: 10.1002/pmic.201100116

    Article  PubMed  CAS  Google Scholar 

  • Karczmar A.G. & Berg G.G. 1951. Alkaline phosphatase during limb development and regeneration of Amblystoma opacum and Amblystoma punctatum. J. Exp. Zool. 117(1): 139–163. DOI: 10.1002/jez.1401170108

    Article  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins in the assembly of the head of bacteriophage T4. Nature 227: 680–685. DOI: 10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Li M.H. 2008. Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere 70(10): 1796–1803. DOI: 10.1016/j. chemosphere.2007.08.032

    Article  PubMed  CAS  Google Scholar 

  • Lovett D.L., Towle D.W. & Faris J.E. 1994. Salinity-sensitive alkaline phosphatase activity in gills of blue crab Callinectes sapidus Rathbun. Comp. Biochem. Physiol. B 109: 163–173. DOI: 10.1016/0305-0491(94)90153-8

    Google Scholar 

  • Ma K.X., Chen G.W., Lou H. & Fei L.N. 2009. Cloning and expression analysis of hsp70 gene from freshwater planarian Dugesia japonica. Biologia 64: 1018–1024. DOI: 10.2478/s11756-009-0158-8

    Article  CAS  Google Scholar 

  • Ma K.X., Chen G.W. & Liu D.Z. 2012. cDNA cloning of heat shock protein 90 gene and protein expression pattern in response to heavy metal exposure and thermal stress in planarian Dugesia japonica. Mol. Biol. Rep. 39(6): 7203–7210. DOI: 10.1007/s11033-012-1552-9

    Article  PubMed  CAS  Google Scholar 

  • Manchado M., Salas-Leiton E., Infante C., Ponce M., Asensio E., Crespo A., Zuasti E. & Canavate J.P. 2008. Molecular characterization, gene expression and transcriptional regulation of cytosolic HSP90 genes in the flatfish Senegalese sole (Solea senegalensis Kaup). Gene 416(1–2): 77–84. DOI: 10.1016/j.gene.2008.03.007

    Article  PubMed  CAS  Google Scholar 

  • Mazorra M.T., Rubio J.A. & Blasco J. 2002. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comp. Biochem. Physiol. B 131(2): 241–249. DOI: 10.1016/S1096-4959(01)00502-4

    Article  PubMed  CAS  Google Scholar 

  • Molina R., Moreno I., Pichardo S., Jos A., Moyano R., Monterde J.G. & Camean A. 2005. Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions. Toxicon 46: 725–735. DOI: 10.1016/j.toxicon.2005.07.012

    Article  PubMed  CAS  Google Scholar 

  • Moriyama T., Kawanishi S., Inoue T., Imai E., Kaneko T., Xia C., Takenaka M., Noguchi T., Kamada T. & Ueda N. 1994. cDNA cloning of a cytosolic protein tryosine phosphatase (RKPTP) from rat kidney. FEBS Letters 353(3): 305–308. DOI: 10.1016/0014-5793(94)01064-1

    Article  PubMed  CAS  Google Scholar 

  • Morotomi T., Kitamura C., Toyono T., Okinaqa T., Washio A., Satio N., Nishihara T., Terashita M. & Anan H. 2011. Effects of heat stress and starvation on clonal odontoblast-like cells. J. Endod. 37(7): 955–961. DOI: 10.1016/j.joen.2011.03.037

    Article  PubMed  Google Scholar 

  • Moss D. W. 1982. Alkaline phosphatase isoenzymes. Clin. Chem. Rev. 28(10): 2007–2016.

    CAS  Google Scholar 

  • Moss D.W. 1992. Perspectives in alkaline phosphatase research. Clin. Chem. 38(12): 2486–2492.

    PubMed  CAS  Google Scholar 

  • Ohkubo A., Langerma N. & Kaplan M.M. 1974. Rat liver alkaline phosphatase. J. Biol. Chem. 249(22): 7174–7180.

    CAS  Google Scholar 

  • Pinoni S.A., Goldemberg A.L. & Lopez Mananes A.A. 2005. Alkaline phosphatase activities in muscle of the euryhaline crab Chasmagnathus granulatus: Response to environmental salinity. J. Exp. Mar. Biol. Ecol. 326: 217–226. DOI: 10.1016/j.jembe.2005.06.004

    Article  CAS  Google Scholar 

  • Pra D., Lau A.H., Knakievicz T., Carneiro F.R. & Erdtmann B. 2005. Environmental genotoxicity assessment of an urban stream using freshwater planarians. Mutat. Res. 585(1–2): 79–85. DOI: 10.1016/j.mrgentox.2005.04.002

    PubMed  CAS  Google Scholar 

  • Safahieh A., Hedayati A., Savari A. & Movahedinia A. 2010. Effect in vitro exposure of mercury chloride on phosphatase enzymes in yellowfin sea bream (Acanthopagrus Latus). Am-Euras. J. Toxicol. Sci. 2(4): 208–214.

    Google Scholar 

  • Swarup G., Cohen S. & Garbers D.L. 1981. Selective dephosphorylation of proteins containing phosphotyrosine by alkaline phosphatases. J. Biol. Chem. 256(15): 8197–8201.

    PubMed  CAS  Google Scholar 

  • Trepanier J.M., Seargeant L.E. & Stinson R.A. 1976. Affinity purification and some molecular properties of human liver alkaline phosphatase. Biochem. J. 155: 653–660.

    PubMed  CAS  Google Scholar 

  • Wenemoser D. & Reddien P.W. 2010. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev. Biol. 344(2): 979–991. DOI: 10.1016/j.ydbio.2010.06.017

    Article  PubMed  CAS  Google Scholar 

  • Whittaker J.R. 1990. Determination of alkaline phosphatase expression in endodermal cell lineages of an ascidian embryo. Biol. Bull. 178(3): 222–230.

    Article  CAS  Google Scholar 

  • Whyte M.P. 2010. Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann. N.Y. Acad. Sci. 1192(1): 190–200. DOI: 10.1111/j.1749-6632.2010.05387.x

    Article  PubMed  CAS  Google Scholar 

  • Wright G.H. 1977. Changes in plasma membrane enzyme activities during liver regeneration in the rat. Biochimica et Biophysica Acta (BBA) — Biomembranes 470(3): 368–387. DOI: 10.1016/0005-2736(77)90128-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Wen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GW., Ma, KX. & Liu, DZ. Changes of alkaline phosphatase activity in response to different stressors in planarian Dugesia japonica . Biologia 68, 264–268 (2013). https://doi.org/10.2478/s11756-013-0147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0147-9

Key words

Navigation