Skip to main content
Log in

Nitrate or NaCl regulates floral induction in Arabidopsis thaliana

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Flowering, the transition from the vegetative to reproductive phase in plants, is regulated by both endogenous and environmental signals. Exposure to an extended period of stress (such as low nitrate or NaCl) can also promote flowering in many species, but little is known about how these forms of stress regulate floral induction. In this study, we found that stress induced by low concentrations of nitrate or NaCl activated the biosynthesis of gibberellin (GA) as evidenced by increased expression of the GA biosynthetic enzyme GA1. Expression of CO and SOC1 were also enhanced, leading to an acceleration of flowering. The effects of nitrate and NaCl on the photoperiod pathway were distinct, however. Two genes related to the photoperiod pathway, CCA1 and LHY, were repressed only under low NaCl treatment, while expression was unaltered by nitrate. Therefore, we suggest that the biosynthesis of gibberellin (GA) may play an important role in integrating signals induced by exogenous stress to regulate flowering in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SOC1 :

suppressor of overexpression of CO 1

VIN3 :

vernalization insensitive 3

GA :

gibberellic acid

FT :

flowering locus T

References

  • Alexandre C.M. & Hennig L. 2008. FLC or not FLC: the other side of vernalization. J. Exp.Bot. 59: 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S., Sureshkumar S., Lempe J. & Weigel D. 2006. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. Plos. Genetics 2: 980–989.

    Article  CAS  Google Scholar 

  • Bernier G. 1988. The control of floral evocation and morphogenesis. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 39: 175–219.

    Article  Google Scholar 

  • Blazquez M.A., Green R., Nilsson O., Sussman M.R. & Weigel D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10: 791–800.

    PubMed  CAS  Google Scholar 

  • Blázquez M.A., Ahn J.H. & Weigel D. 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics 33: 168–171.

    Article  PubMed  Google Scholar 

  • Candau R., Avalos J. & Cerda-Olmedo E. 1992. Regulation of gibberellin biosynthesis in Gibberella fujikuroi. Plant Physiol. 100: 1184–1188.

    Article  PubMed  CAS  Google Scholar 

  • Chandler J. & Dean C. 1994. Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh. J. Exp. Bot. 45: 1279–1288.

    Article  CAS  Google Scholar 

  • Hayama R. & Coupland G. 2003. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin. Plant Biol. 6: 13–19.

    Article  PubMed  CAS  Google Scholar 

  • He Y. & Amasino R.M. 2005. Role of chromatin modification in flowering-time control. Trends Pl. Sci. 10: 30–35.

    Article  CAS  Google Scholar 

  • He Z. 1993. A Laboratory Guide to Chemical Control Technology on Field Crop. Beijing Agricultural University Press, Beijing, pp. 60–68.

    Google Scholar 

  • Helliwell C.A., Wood C.C., Robertson M., James Peacock W. & Dennis E.S. 2006. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high molecular weight protein complex. Plant J. 46: 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Hepworth S.R., Valverde F., Ravenscroft D., Mouradov A. & Coupland G. 2002. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 21: 4327–4337.

    Article  PubMed  CAS  Google Scholar 

  • Hisamatsu T., King R.W., Helliwell C.A. & Koshioka M. 2005. The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol. 138: 1106–1116.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen S.E. & Olszewski N.E. 1993. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5: 887–896.

    PubMed  CAS  Google Scholar 

  • Jung H.H. & Kim K.S. 2010. Flowering and growth of adonis amurensis as influenced by temperature and photosynthetic photon flux density. Horticul. Environ. Biotech. 51: 153–158.

    Google Scholar 

  • Kim S.Y., Park B.S., Kwon S.J., Kim J., Lim M.H., Park Y.D., Kim D.Y., Suh S.C., Jin Y.M. & Ahn J.H. 2007. Delayed flowering time in Arabidopsis and Brassica rapa by the over-expression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep. 26: 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Klebs G. 1913. Uber das Verhaltnis der Außenwelt zur Entwicklung der Pflanze. Sitz-Ber Akad Wiss Heidelberg Ser B 5: 3–47.

    Google Scholar 

  • Loeppky H.A. & Coulman B.E. 2001. Residue removal and nitrogen fertilization affects tiller development and flowering in meadow bromegrass. Agron. J. 93: 891–895.

    Article  Google Scholar 

  • Marín I.C., Loef I., Bartetzko L., Searle I., Coupland G., Stitt M. & Osuna D. 2011. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233: 539–552.

    Article  Google Scholar 

  • Martínez C., Pons E., Prats G. & León J. 2004. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J. 37: 209–217.

    Article  PubMed  Google Scholar 

  • Moon J., Suh S.S., Lee H., Choi K.R., Hong C.B., Paek N.C., Kim S.G. & Lee I. 2003. The SOC1 MADS box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35: 613–623.

    Article  PubMed  CAS  Google Scholar 

  • Mouradov A., Cremer F. & Coupland G. 2002. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14: S111–S130.

    PubMed  CAS  Google Scholar 

  • Munns R. 1985. Na+, K+ and Cl in xylem sap flowing to shoots of NaCl-treated barley. J. Exp. Bot. 36: 1032–1042.

    Article  CAS  Google Scholar 

  • Neta Sharir I., Shoseyov O. & Weiss D. 2000. Sugars enhance the expression of gibberellin induced genes in developing petunia flowers. Physiol. Plant. 109: 196–202.

    Article  CAS  Google Scholar 

  • Nieman R. & Bernstein L. 1959. Interactive effects of gibberellic acid and salinity on the growth of beans. Am. J. Bot. 46: 667–670.

    Article  CAS  Google Scholar 

  • Onouchi H., Igeńo M.I., Périlleux C., Graves K. & Coupland G. 2000. MMutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12: 885–900.

    PubMed  CAS  Google Scholar 

  • Rieu I. & Powers S.J. 2009. Real-time quantitative RT-PCR: Design, calculations, and statistics. Plant Cell 21: 1031–1033.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz R.J. & Amasino R.M. 2007. Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants. BBA — Gene Struct. Expres. 1769: 269–275.

    Article  CAS  Google Scholar 

  • Seo E., Lee H., Jeon J., Park H., Kim J., Noh Y.S. & Lee I. 2009. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21: 3185–3197.

    Article  PubMed  CAS  Google Scholar 

  • Sharp R., Else M., Cameron R. & Davies W. 2009. Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development. Sci. Hortic. 120: 511–517.

    Article  Google Scholar 

  • Sheldon C.C., Finnegan E.J., Rouse D.T., Tadege M., Bagnall D.J., Helliwell C.A, Peacock W.J. & Dennis E.S. 2000. The control of flowering by vernalization. Curr. Opin. Plant Biol. 3: 418–422.

    Article  PubMed  CAS  Google Scholar 

  • Sheldon C.C, Hills M.J., Lister C., Dean C., Dennis E.S. & Peacock W.J. 2008. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc. Natl. Acad. Sci. 105: 2214–2219.

    Article  PubMed  CAS  Google Scholar 

  • Storey R. & Jones R.G.W. 1978. Salt stress and comparative physiology in the Gramineae. I. Ion relations of two salt-and water-stressed barley cultivars, California Mariout and Arimar. Funct. Plant Biol. 5: 801–816.

    CAS  Google Scholar 

  • Suárez-López P., Wheatley K., Robson F., Onouchi H., Valverde F. & Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116–1120.

    Article  PubMed  Google Scholar 

  • Sung S. & Amasino R.M. 2005. Remembering winter: toward a molecular understanding of vernalization. Ann. Rev. Plant Biol. 56: 491–508.

    Article  CAS  Google Scholar 

  • Valverde F., Mouradov A., Soppe W., Ravenscroft D., Samach A. & Coupland G. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003–1006.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z.Y. & Tobin E.M. 1998. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207–1217.

    Article  PubMed  CAS  Google Scholar 

  • Weiler E.W. 1986. Plant hormone immunoassay based on monoclonal and polyclonal antibodies, pp. 1–17. In: Linskens H.F. & Jackson J.F., (eds), Immunology in Plant Sciences. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Wilson R.N., Heckman J.W. & Somerville C.R. 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi Y., Ogawa M., Kuwahara A., Hanada A., Kamiya Y. & Yamaguchi S. 2004. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16: 367–378.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y.M., Xu C.N., Wang B.M. & Jia J.Z. 2001. Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regul. 35: 233–237.

    Article  CAS  Google Scholar 

  • Zhang M., Cai R.G., Li H.Z., Li J.M., Dai Z.M., Wang Z.L. & Yi Y.P. 2008. Responses of seedling growth and endogenous hormone contents in different wheat cultivars to salt stress. Acta Ecol. Sinica 28: 310–320. (In Chinese)

    CAS  Google Scholar 

  • Zhao X.Y., Yu X.H., Foo E., Symons G.M., Lopez J., Bendehakkalu K.T., Xiang J., Weller J.L., Liu X.M., Reid J.B. & Lin C.T. 2007. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol. 145: 106–118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Li, Y., Ren, J. et al. Nitrate or NaCl regulates floral induction in Arabidopsis thaliana . Biologia 68, 215–222 (2013). https://doi.org/10.2478/s11756-013-0004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0004-x

Key words

Navigation